
www.manaraa.com

www.manaraa.com

3H00L
3C0k

www.manaraa.com

www.manaraa.com

www.manaraa.com

unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1 b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Naval Postgraduate School

6b. OFFICE SYMBOL
(If applicable)

55

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS (Crty, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Program Element No Project No Work Unit Accession

Number

1 1 . TITLE (Include Security Classification)

Re-engineering Software Systems in the Department of Defense Using Integrated-Computer Aided Software Engineering Tools

1 2. PERSONAL AUTHOR(S) Jennings, Charles A.

13a. TYPE OF REPORT
Master's Thesis

13b. TIME COVERED

From To

1 4 DATE OF REPORT (year, month, day)

92 September 24

15. PAGE COUNT

124
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those ofthe author and do not reflect the official policy or position ofthe Department of Defense or the U.S.

Government.

17.COSATICODES

FIELD GROUP SUBGROUP

18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

Software Re-engineering, Reverse Engineering, Computer-Aided Software Engineering

,

Integrated -Computer Aided Software Engineering

1 9. ABSTRACT (continue on reverse if necessary and identify by block number)

The Department of Defense (DoD) is plagued by severe cost overruns and delays in developing software systems. Existing software within

DoD, some developed 15 to 20 years ago, require continual maintenance and modification. Major difficulties arise with maintaining older

systems due to cryptic source code and a lack ofadequate documemtation. To remedy this situation, the DoD, is pursuing the integrated

computer aided software engineering (I-CASE) procurement as a means to improve DoD's development and maintenance of software

systems. This study focuses on the concepts and theory behind software re-engineering. In particular, it studies the current state of

I-CASE technology, and the feasibility of re-engineering existing software systems for migration to an I-CASE environment.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

W] UNCLASSIFIED/UNLIMITED I*"* SAME AS REPORT f"l

22a. NAME OF RESPONSIBLE INDIVIDUAL

Martin J. McCaffrey

2 1 . ABSTRACT SECURITY CLASSIFICATION

Unclassified

22b. TELEPHONE (Include Area code)

(408)646-2488

22c. OFFICE SYMBOL
AS/Mf

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

TP60868

www.manaraa.com

Approved for public release; distribution is unlimited.

Re-Engineering Software Systems In The Department
Of Defense

Using Integrated Computer Aided Software
Engineering Tools

by

Charles A. Jennings
Lieutenant, United States Navy

B.S.B.A. University of Alabama in Huntsville, 1982

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

September 1992

I

www.manaraa.com

ABSTRACT

The Department of Defense (DoD) is plagued by severe cost

overruns and delays in developing software systems. Existing

software within DoD, some developed 15 to 20 years ago,

require continual maintenance and modification. Major

difficulties arise with maintaining older systems due to

cryptic source code and a lack of adequate documentation. To

remedy this situation, the DoD, is pursuing the integrated

computer aided software engineering (I-CASE) procurement as a

means to improve DoD's development and maintenance of software

systems. This study focuses on the concepts and theory behind

software re-engineering. In particular, it studies the

current state of I-CASE technology, and the feasibility of re-

engineering existing software systems for migration to an I-

CASE environment.

111

www.manaraa.com

I-

1

THESIS DISCLAIMER

The following trademarks are used throughout this thesis:

AD/Cycle

Application Development
Workbench

Bachman/Analyst and
Bachman/Database Administrator

Battlemap Analysis Tool

CDD/Repository

Cohesion

DB2

IBM

IEF

IMS

Inspector

Navigator Systems Series

is a registered trademark of
International Business
Machines Corporation.

is a trademark of
Knowledgeware, Inc.

are trademarks of Bachman
Information Systems, Inc.

is a registered trademark of
McCabe & Associates, Inc.

is a registered trademark of
Digital Equipment
Corporation.

is a registered trademark of
Digital Equipment
Corporation.

is a registered trademark of
International Business
Machines Corporation.

is a registered trademark of
International Business
Machines Corporation.

is a registered trademark of
Texas Instruments Inc.

is a registered trademark of
International Business
Machines Corporation.

is a trademark
Knowledgeware, Inc.

of

is a service mark of Ernst &

Young.

IV

www.manaraa.com

MONTEI

Pinpoint

Rapid Application Development

is a trademark of
Knowledgeware, Inc.

is a trademark of James
Martin Associates.

Recorder

RE/Toolset

Repository Manager/MVS

is a trademark
Knowledgeware, Inc.

of

is a trade mark of Ernst &

Young.

is a registered trademark of
International Business
Machines Corporation.

www.manaraa.com

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. RESEARCH QUESTIONS 2

C. METHODOLOGY 3

D. FOCUS 3

E. ORGANIZATION OF THE THESIS 4

II. RE-ENGINEERING AND REVERSE ENGINEERING 6

A. OVERVIEW 6

B. RE-ENGINEERING POTENTIAL 21

C. RE-ENGINEERING LIMITATIONS 31

D. A TAXONOMY OF A RE-ENGINEERING PROJECT 35

E. SUMMARY 39

III. INTEGRATED COMPUTER-AIDED SOFTWARE ENGINEERING . . .41

A. A DEFINITION OF INTEGRATION 42

B. INTEGRATION SUBCOMPONENTS 44

C. CASE VERSUS I-CASE 48

D I-CASE REPOSITORY 49

E. METHODOLOGY 54

F. INTEGRATED ARCHITECTURE 59

G. I-CASE BENEFITS 60

H. I-CASE LIMITATIONS 61

I. THE DoD I-CASE PROCUREMENT 63

J. SUMMARY 65

vi

www.manaraa.com

IV. RE-ENGINEERING WITH I-CASE IN
DoD: DATA COLLECTION 67

A. DATA SEARCH 67

B. INQUIRY BACKGROUND 68

C. INFORMATION SOLICITED 68

D. DATA RESULTS 69

E. SUMMARY 72

V. CONCLUSIONS AND RECOMMENDATIONS 7 3

A. CONCLUSIONS 73

B. ANSWERS TO RESEARCH QUESTIONS 7 5

C. LESSONS LEARNED 80

D. FINAL THOUGHTS AND RECOMMENDATIONS 81

APPENDIX A: THE RE-ENGINEERING CANDIDATE SELECTION
SELECTION PROCESS 84

APPENDIX B: RE-ENGINEERING QUESTIONNAIRE 9 6

APPENDIX C: LIST OF FIGURES 100

APPENDIX D: LIST OF TABLES 106

LIST OF REFERENCES 110

INITIAL DISTRIBUTION LIST 115

Vll

www.manaraa.com

www.manaraa.com

I . INTRODUCTION

A. BACKGROUND

In the 1960's, up to 80% of the cost of a computer system

were attributed to hardware and 20% to software. [Ref. 38:p.

1] By 1985 this trend had dramatically reversed; software

maintenance consumed as much as 80% of system budgets. [Ref.

38 :p. 1] This change was facilitated by the increased

processing power and reduced cost of hardware. The increased

cost of software was due primarily to growth in program size,

increasing complexity of programs, and an ever growing

software maintenance pool. The increased emphasis on software

costs mandated that software be developed not only for initial

functionality, but also to have characteristics that would

enable cost effective maintenance.

Over the years, the DoD has witnessed its software

inventory grow by millions of lines of code. Much of it being

old (legacy) code. Many of these older DoD software systems,

created prior to the implementation of structured

methodologies, were developed along artistic "ad hoc" means.

Worse than the poor design techniques used for this software

was the frequent lack of adequate software documentation. The

cost to maintain old systems are enormous. Progress in

operating systems, microprocessor capability, and

telecommunications has enabled faster, more flexible, and less

www.manaraa.com

costly computing power than ever before. Many obsolete

systems are being up-graded. Many government organizations

have found that older and functional systems are still quite

useful when migrated to newer computing platforms. Two years

ago DoD introduced the Corporate Information Management (CIM)

initiative to stream- line and reduce the costs of its

information technology. One of the goals of CIM is to

capitalize on Integrated Computer Aided Software Engineering

(I- CASE) and re-engineering technology to develop new systems

and re- engineer existing systems that will provide improved,

more cost efficient systems. This thesis will focus on these

issues

.

B. RESEARCH QUESTIONS

This thesis will focus on the following research

questions.

1. Primary Question

From DoD's standpoint, what needs to be considered, as

well as avoided, in re-engineering its inventory of systems

within an Integrated Computer Aided Software Engineering (I-

CASE) environment?

2. Subsidiary Questions

a. What are the current problems facing the CASE and
I -CASE industry?

b. Can re-engineering using I -CASE tools produce
viable systems for DoD?

c. How many systems within DoD warrant re-
engineering?

www.manaraa.com

d. What are the estimated cost savings DoD can
anticipate by re-engineering some of its
applications?

C . METHODOLOGY

This research was developed in four stages. First, a

literature review was conducted on CASE, I -CASE, and software

re-engineering. This set the ground work for understanding

the theory and attributes of current CASE/I -CASE technology as

well as the work that had been completed in these domains.

Second, interviews and site visits to CASE/I-CASE vendors, and

attendance at recent CASE and re-engineering conferences

enabled the preliminary collection of data. The third stage

of research consisted of telephone interviews and electronic

mail (e-mail) correspondence with government, industry, and

academic personnel . It further enhanced the understanding of

re-engineering and I-CASE technology issues. Finally, a

questionnaire was developed and sent to three government

locations actually working with I-CASE tools. The response to

the questionnaire was analyzed and served, along with

information gathered from other sources, as the basis for the

conclusions and recommendations at the end of the thesis.

D . FOCUS

This research was designed to collect information on

organizations' use of I-CASE tools for software re-

engineering. Initially, the major objectives were the

following:

www.manaraa.com

1. analyze the benefits of using an I -CASE tool for re-
engineering;

2. access the learning curve, i.e., how did personnel
adjust to using an I -CASE tool, and how long did it
take to become proficient in the use of an I -CASE
tool

;

3. determine what the lessons learned were from re-
engineering with an I-CASE tool.

However, due to the time constraints involved with this

research, plus limited available data from organizations'

using I-CASE tools in a re-engineering capacity, a large

sample of data was not obtainable that would have helped in

analyzing the items listed above. Instead, the focus of this

research shifted to explaining the theory and managerial

issues surrounding software re-engineering and I-CASE. One

organization was found using an I-CASE tool in a re-

engineering capacity. However, the data obtained was not

sufficient to lead to any substantial conclusions on benefits,

learning curves, or lessons learned.

E. ORGANIZATION OF THE THESIS

This thesis is organized into five chapters. Chapter II

presents an overview of the theory of re-engineering. It

discusses technical and managerial considerations involved

with a software re-engineering process, plus capabilities and

limitations of re-engineering. Chapter III reviews the

components and theory involved with I-CASE along with I-CASE

benefits and limitations. Chapter IV covers data collection

and the results of the research findings. Chapter V concludes

4

www.manaraa.com

with the lessons learned from the research and offers

recommendations for future research.

www.manaraa.com

II. RE-ENGINEERING AND REVERSE ENGINEERING

A. OVERVIEW

This chapter provides an overview of software

reverse engineering and re-engineering. The differences

between the two processes and their relationship in terms of

the systems development life cycle (SDLC) and Computer-Aided

Software Engineering (CASE) tools are discussed. Particular

attention will be placed on key terminology and definitions

associated with re-engineering. Capabilities and limitations

associated with re-engineering, as well as selection criterion

for re-engineering projects, are discussed. The chapter

concludes with a discussion of steps comprising a successful

re-engineering project.

1. Definitions

Re-engineering is a relatively new and emerging

technology. Thus, the definition of the terms re-engineering

and reverse engineering may vary depending on the source. One

widely accepted definition of the terms re-engineering,

reverse engineering, and forward engineering are as follows:

Re-engineering, also known as renovation and reclamation,
is the examination and alteration of a subject system to
reconstitute it in a new form, and the subsequent
implementation of the new form. [Ref. l:pp. 15-16]

Reverse engineering is the process of analyzing a subject
system to identify the system's components and their inter-
relationships and create representations of the system in
another form or at a higher level of abstraction. [Ref.
l:p. 15]

www.manaraa.com

Forward Engineering is the traditional process of moving
from high-level abstractions and logical,
implementation- independent design to the physical
implementation of a system. [Ref. l:p. 14]

The previous definitions are fairly formal and may

appear cumbersome, especially if one is not familiar with re-

engineering technology. So perhaps a different, yet easily

understandable definition to these re-engineering terms is

warranted:

Software re-engineering. A combination of tools and
techniques that facilitate the analysis, improvement,
redesign and reuse of existing software systems to support
changing information needs. [Ref. 42 :p. U-2]

Reverse engineering is the analysis of an existing

system in order to represent it in another form. For example,

logical data models, data flow diagrams, entity- relationship

diagrams, or action diagrams could be selected as other forms

of representation. [Ref. 20 :p. 2]

Forward engineering can be considered the process of

developing a system from definition/analysis through design,

to code construction and testing, to the eventual

implementation and acceptance of a working system. It

includes testing, documentation and configuration management.

A more pragmatic view of defining re-engineering is in

the area of reuse. Re-engineering is not software reuse per

se, but rather a means of facilitating reuse. In broad terms,

software reuse is taking a segment of code from one system and

transporting (i.e., reusing) it to another program without

www.manaraa.com

modification. It still functions as designed. For instance

an algorithm that computes a radio frequency may be used as an

example. The ability of the algorithm to work in different

programs is dependent upon the programming language and

operating system that the algorithm was originally created in.

If different operating environments are compatible, then the

algorithm could be used. Re-engineering's application of

reuse differs in the sense that it uses existing code that is

then modified by using a set of techniques, tools, and

methodologies. [Ref. 39 :p. 3] More efficient, effective and

maintainable software is the result.

2. Relationship between Re-engineering and Reverse

Engineering

"Re-engineering generally includes some form of

reverse engineering (to achieve a more abstract description)

followed by some form of forward engineering or restructur-

ing." [Ref. l:p. 15] In other words, the relationship between

re-engineering and reverse engineering could be stated as

follows

:

Re-engineering = Reverse Engineering + Forward Engineering.

This definition tends to be the one most broadly

accepted by the software industry. [Ref. 6:p. 1] By

transforming the program code into higher levels of

abstraction, the business rules 1 and characteristics of the

1 Business rules or business intentions of a system are the
values or constraints that the source code embodies. For example:
Gross Pay = Hourly Rate * Hours Worked [Ref. 5:p. B6-18].

8

www.manaraa.com

code can be further examined. [Ref . l:p. 15] To lay the ground

work for understanding re-engineering, one must first

comprehend the concept of abstractions: how they are created

and their function in the reverse engineering process. Both

items are discussed in the following section.

3 . Reverse Engineering and the Concept of Abstraction

Understanding the concept of abstraction is the key

point to grasping the re-engineering process. Raising program

code to higher levels of abstraction is associated with

reverse engineering. This is because the reverse engineering

process takes existing program source code, which can be

thought of as a physical description of a system, or more

commonly "how" a system works, and transforms the source code

to a specification level. The specification level describes

"what" the system code does. [Ref. 9:pp. 54-55] An analogy

of abstraction would be that of a simple road map. A map can

show you how to travel from point A to point B without

displaying every bend in the road between the two points. In

terms of software engineering terminology, an abstraction may

be in the form of data flow diagrams (DFD's), or entity-

relationship diagrams (ERD's) that serve as abstractions

representing the program source code. Two key benefits of

expressing source code in a higher level of abstraction are:

a. Size: fewer lines of code are needed to represent
the original source code when it is represented
in a process module of a DFD or ERD. [Ref. 5:p.
B6-6]

www.manaraa.com

b. Context: source code in a higher level of
abstraction is more context free. For example,
in human speech words are often constrained and
defined depending on they are used in a sentence.
In the declarative phrase "Look! I said to move
these items now, not tomorrow. " the exclamation
mark after the word "look" conveys attention to
the order that is about to follow. Whether this
is written or spoken, a human can understand the
semantics associated with the command. But if
the same phase is changed slightly to "Excuse me.
Please move these items now, not tomorrow, the
meaning is altered. Higher level abstractions
are more context free in the sense that the
meaning contained in them is not lost or altered
because of their placement or relationship with
other abstraction modules. [Ref . 5]

There are limitations to the extent to which source

code may be represented at higher levels of abstraction.

Further discussion into these limitations are discussed later

in this chapter under the topic of technical considerations.

However, the salient feature of reverse engineering is that

design elements are created and stored into a repository. 2

This data in the repository will be used in the forward

engineering process, which is covered in the following

section.

There are numerous reverse engineering tools

available. The following is a brief classification of reverse

engineering tools and examples from various vendors:

a. Migrating tools translate from one language or
database to another. For example from COBOL to
C, or Information Management System (IMS)

,

Database 2 (DB2) to another database system.
[Ref. 20 :p. 3] Products include Bachman/Analyst

Repositories are covered in greater detail in Chapter III

10

www.manaraa.com

and Bachman/Database Administrator from Bachman
Information Systems Inc. [Ref. 43 :p. 73]

b. Restructuring tools can scan old COBOL, C, Ada,
Fortran, Pascal, PL/1, or Assembler code and make
them easier to read, i.e., more structured. [Ref.
20 :p. 3] Products for COBOL include Application
Browser and Hypercode Management System from
Hypersoft Corporation. [Ref. 43 :p. 73]

c. Design recovery tools extract business rules from
existing code. [Ref. 20 :p. 3] Products include
RE/Toolset from Ernst & Young and InterCASE from
Interport Software Corporation.

d. Static logic analyzers 3 read code and prepare
graphic representations of its logic and control
flows. They help pinpoint potential side effects
of a code change, and provide up-to-date
documentation of a system. [Ref. 20 :p. 3]

e. Complexity tools enable programmers and
maintainers of software systems to visualize the
structure of a program by creating on-screen
graphs. It is practically impossible to
determine the structure of a program by manually
reading source code line by line. Complexity
tools will identify which sections of a program
are unmaintainable and untestable. One of the
better known complexity tools is the Battle Map
Analysis Tool from McCabe & Associates, Inc.

Since the reverse engineering process provides a

closer examination of data at a higher abstraction level, it

allows for two important capabilities:

a. A better understanding of the current system's
complexity and functionality, which enables the
identification of "trouble spots" within a
program. [Ref. 38 :p. 4]

3 A thorough report that lists and analyses various static
analysis tools can be found in "Source Code Static Analysis Tools
Report, April 1992," published by the Software Technology Support
Center, Hill Air Force Base, UT 84056.

11

www.manaraa.com

b. A means to restructure or "clean up" data in
order to forward engineer and change it into a
new system. [Ref. 2:p. 4]

4. Forward Engineering

The forward engineering process picks up where the

reverse engineering process left off. The design elements

created and stored in the repository during the reverse

engineering phase are now available for manipulation by CASE

or I-CASE tools. Theoretically this process sounds simple and

intuitive, but in actuality the forward engineering process

can be very time consuming. Forward engineering requires

developers to analyze, plan, construct and test code. CASE

and I-CASE tools help the developer in automating many of the

items that were once manual processes. For example, design

elements in a repository provide the data (files, entities,

relationships among data etc.) , but people are needed to place

the data in a coherent structure that, when manipulated by a

CASE or I-CASE tool, results in a functional system. There

are numerous CASE tools available for forward engineering.

Each have both similar and different capabilities. 4

5. Distinction between Re-engineering and Reverse

Engineering

In order to understand the re-engineering process, it

is fundamental to comprehend the distinction between reverse

4 A thorough report that covers forward engineering tools is
"Re-engineering Tools Report March 1992, published by the Software
Technology Support Center, Hill Air Force Base, UT 84056.

12

www.manaraa.com

engineering and re-engineering. The distinction is thus:

reverse engineering does not change a system, it only extracts

data to a higher level of abstraction. Re-engineering takes

the information derived from the reverse engineering process

and forward engineers the information, using CASE or I-CASE

tools, into a into a new form, but without changing the

function of the system. [Ref. 5:p. B6-1]

Figure 2-1 in Appendix C, displays a simple diagram of

reverse engineering and re-engineering. 5 The gist of the

diagram is to show the distinction between reverse engineering

and re-engineering. Two key points of Figure 2-1 are

[Ref. 5]:

a. Reverse engineering only raises program code to a
higher specification level of abstraction, this
is represented by the arrow moving from the code
to the specification level. The reverse
engineering process does not change a system.

b. Re-engineering takes the higher level
specification abstractions and changes the
abstractions into new code that has similar
functionality to that of the original source
code. This is represented by the arrow first
moving from the code to the specification level
then returning back down to the code. For
example, a payroll system that is written in
COBOL is characterized as being unstructured
(i.e., difficult to read, understand and
maintain) . Re-engineering will take the
information contained from the reverse
engineering process and make the program more
structured and thus maintainable.

5 This diagram was presented by Dr. Eric Bush on February 18,
1992 at the CASE World Conference & Exposition held in Santa Clara,
California, and again on August 11, 1992 at the National Software
Re-engineering and Maintenance conference held in San Jose,
California.

13

www.manaraa.com

6. Systems Development Life Cycle

During the 1980 's the systems development life cycle

(SDLC) methodology became a traditional means of implementing

a computer system. There are many versions and definitions

for SDLC. A basic, yet thorough definition is as follows:

A systems development life cycle (SDLC) is a process by
which systems analysts, software engineers, and
programmers build systems. It is a project management
tool, used to plan, execute, and control systems
development projects. [Ref. 21 :p. 81]

As shown in Figure 2-2, the SDLC is composed of four

major phases: systems analysis, systems design, systems

implementation, and system maintenance/support. The SDLC

methodology is also used for software re-engineering. The

following terms are frequently associated with the SDLC:

a. Feasibility Study. This process determines
whether or not significant resources should be
committed to the other phases of the SDLC. The
feasibility study will also define the scope of a
project, perceived problems and opportunities,
business and technical constraints, perceived
project goals and possible solutions. [Ref.
21:p. 87]

b. System Analysis. After the feasibility study has
identified a need, analysis is conducted to
identify the current capabilities of an existing
system. You cannot enhance a system without
first understanding "how" it works. The analysis
phase must produce a specification that outlines
the functional and data requirements of a system.

c. System Design. Data flow diagrams, entity
relationship diagrams, file layouts and other
structured techniques designed to represent and
capture data in different abstraction levels are
accomplished during this phase, abstractions of
program code created during the design phase are
language, operating system and database
management system (DBMS) independent. No coding

14

www.manaraa.com

is done during the design phase.

d. System Implementation. The actual programming of
code for the complete system is accomplished
during this phase.

e. Testing. Consists of internal testing of the
system prior to delivery to the user. The
internal tests can be categorized as unit tests,
integration tests, and performance tests. Unit
testing focuses on the smallest unit of software
design, which is the module. Integration testing
is conducted to uncover any errors that may
occur by bringing different modules together
under one system. Performance testing is
conducted after integration testing. Performance
testing 6 consists of various types of tests,
notably stress testing. Stress testing places
abnormal conditions on a program in order to
analyze a program's ability to handle increased
demands. Acceptance testing is conducted by the
user under the watchful eye of the developer.

f. System Maintenance/Support. After a system has
been tested and accepted by the user, it is
considered to be in the maintenance phase. [Ref.

8:pp 20-22] Maintenance consists of fixing
errors, adding user desired enhancements and
additional functionality, and adapting to
hardware and software system changes.

The SDLC also has key personnel that make the process

function; these positions are Database Administrator, Systems

Analyst/Project Manager, Business Analyst, Programmer, Data

Administrator and User.

The Database Administrator (DBA) is the individual

responsible for the selection, evaluation, implementation, and

management of a database management system. This person is an

organization's leading technical expert on database activities

6 Other types of performance tests include: volume, security,
configuration, recovery and human factors.

15

www.manaraa.com

and is responsible for the daily database operations.

[Ref. 22:p. 44]

The Systems Analyst/Project Manager is responsible for

the overall development of an information system. They design

and modify systems by turning user requirements into a set of

functional specifications, which are the blueprints of the

system. Systems analysts are the architects, as well as the

project leaders, of an information system. It is their job to

develop solutions to user's problems, determine the technical

and operational feasibility of their solutions, as well as

estimate the costs to develop and implement them.

The Business Analyst analyzes the operations of a

department or functional unit. Their purpose is to develop a

general system's solution to the problem. It may or may not

require automation. The business analyst provides insights

into the business operation for the systems analyst.

The Programmer is proficient in a particular computer

language and good software engineering practice and writes

application programs based on provided functional specifi-

cations. The programmer will conduct unit tests and is

normally proactive in the integration testing of a system.

The Data Administrator has the overall responsibility

for the organization's data resources, and is responsible for

non- technical activities such as planning and defining the

conceptual framework for the overall database environment, not

16

www.manaraa.com

just that specifically limited to DBMS usage. [Ref. 22:pp.

43-44]

The User is the person or organization that will own

and operate a software system after it has completed a

successful acceptance test. It is their responsibility to

determine the systems requirements and functionality.

The SDLC can be enhanced by CASE tools. CASE tools

are a collection of hardware and software elements that "aid"

the user in software development. The "aid" that both CASE

and I -CASE provides is that they automate processes of

software development that were previously manual operations.

CASE tools can be broadly categorized into three parts: upper

CASE, lower CASE and integrated CASE (I -CASE) . [Ref. 4:p. 45]

Upper CASE tools consist of software tools that aid in the

analysis and design phase of the software development life

cycle. Lower CASE generally deals with the latter stages of

the software development life cycle: code construction, code

testing and actual implementation. I -CASE tools combine the

separate functionality of both upper and lower CASE tools into

a single set of interworking tools. [Ref. 4:p. 45] Further

detail of CASE and I -CASE is covered in Chapter III.

7. The Conceptual Re-engineering Model

Now that the re-engineering process, SDLC, and a brief

over-view of CASE has been discussed, a model is presented

that describes the re-engineering process that relates all

three. Figure 2-3 displays a re-engineering cycle developed

17

www.manaraa.com

by Charles Bachman. 7 This is a model that depicts the role

people perform in a re-engineering environment that is

utilizing CASE. The model was altered for this paper to also

show the corresponding SDLC levels of development. This model

is different from the conventional SDLC in that CASE usage

enables a "continuity of applications systems and their

revisions over time." [Ref. 9:p. 50] In other words, the

conventional SDLC without CASE was a cradle to grave

development scheme. Using CASE and I -CASE tools provides

continual modifications and enhancements through

re - engineering

.

The model works as follows: reverse engineering starts

at the bottom left corner with an existing application at the

operational level. CASE or I-CASE tools allow programmers,

who are normally more acquainted with the program source code,

the ability to extract and refine existing specifications that

will be raised to higher levels of abstraction and eventually

placed into a repository. The initial design specifications

identified will be reviewed by the programmer and the DBA at

the implementation level. The implementation level will

categorize source level descriptions of files and databases.

The design objects in this phase include: records, reports,

and screens. The information identified in the implementation

level will then be passed on to the data analysts and systems

7 It appeared in the July, 1988 issue of Datamation

18

www.manaraa.com

analysts at the specifications level where the data model 8 of

the application will be developed. The specifications level

will identify the objects of the application, which will be in

the form of entities, relationships, procedures, and

processes. The requirements level will involve the business

analysts identifying the goals, requirements and critical

success factors that the application should embody. [Ref.

9:pp. 50-56] The reverse engineering process culminates with

the population of the design specifications into a repository.

Once the design specifications are resident in a

repository, the forward engineering process may begin. The

forward engineering process involves more than utilizing CASE

or I -CASE tools. People must determine how to use the

information in the repository and integrate that information,

using CASE or I -CASE tools, in a coherent manner that will

enable the construction of a new system. Testing is not shown

in this model, not because it is a transparent or minor

process; it is not. But because it is assumed that testing

always takes place in a software development process.

According to Tom McCabe, of McCabe & Associates, Inc.,

"testing consumes one half to one third of most software

project budgets." [Ref. 46 :p. 8]

The model shown in Figure 2-3 may give one the feeling

that re-engineering is a simple process when using a CASE or

8 A data model describes how data is structured in a database.
Examples of databases include hierarchical, network, and
relational

.

19

www.manaraa.com

I -CASE tool. The reality is that re-engineering is a highly

complex and difficult task. A prime example is a re-

engineering case study conducted by the Internal Revenue

Service (IRS) and the National Institute of Standards and

Technology (NIST) . The case study was focused on the IRS

Centralized Scheduling Program (CSP) system. This system was

written in 1983 in COBOL 74 and consisted of 37 source

programs that constituted approximately 50,000 lines of COBOL

code. [Ref. 38 :p. 7] Additionally, the CSP system had 53

subroutines of assembly language that totaled 2,738 lines of

code (LOC) . [Ref. 38 :p. 7] The system was not completely re-

engineered. Approximately 56% of the system was reverse

engineered to the design level and approximately 3 8% of the

system was re-engineered (source code produced). [Ref. 38:p.

11] Even though CASE tools were used in the project it was

revealed that:

Analysis by humans is essential for identifying what
information is important, determining the functionality of
each program and the entire system, and judging whether
the functionality is necessary Some steps in the
re-engineering process seemed cumbersome and time
consuming. It was possible to automate some steps, but
human effort was needed for analysis and tool operation.
[Ref. 38:pp. 5-11]

CASE and I -CASE tools do not relieve the need for

human intervention in the software development process. Re-

engineering requires people to sometimes manually read source

code line by line in order to get a feel of what the original

developers of the system were trying accomplish.

20

www.manaraa.com

B. RE-ENGINEERING POTENTIAL

There are limited published case studies that discuss

organizations' experiences and lessons learned with re-

engineering. Consequently, at present, there is little

empirical evidence to support re-engineering benefits. One

must realize, however, that re-engineering is still a young

industry. But this does not mean that there is not sufficient

evidence to indicate that benefits are to be gained from re-

engineering. Re-engineering has strong potential. In order

to understand the potential benefits of re-engineering, it is

helpful to first view the current state of the software

inventory in industry; the motivating factors, or reasons to

re- engineer; and the importance software metrics play in

evaluating existing systems for re-engineering.

1. Characteristics of Industry Software Inventory

The significant emphasis given to software re-

engineering by industry and the DoD is not by accident. The

underlying reason for the current emphasis toward re-

engineering is no doubt influenced by the current

characteristics of the software inventory in industry:

a. There are many old and aging applications. The
average software application is greater than ten
years old. [Ref. 40]

b. Poorly structured applications account for
approximately 75% of the existing industry total.
[Ref. 40]

c. Undocumented applications account for
approximately 35% of the industry total. [Ref.
40]

21

www.manaraa.com

d. Over 50% of industry personnel are being utilized
software maintenance. [Ref . 40]

Given the above software inventory posture, it is not

surprising to witness consulting firms positioning themselves

as re-engineering contractors. The combined market for re-

engineering services and products is estimated to reach $14

billion by 1995. [Ref. ll:p. 51]

2. Reasons to Re -engineer

In addition to the above listed characteristics of the

software in industry, re-engineering has gained prominence for

other reasons. First, re-engineering technology provides the

means for an organization to extend the life of a system.

Making program code more maintainable at the source code

level, in turn enables programmers to capture important

elements of the original system at the design level. Better

systems will result with fewer flaws. [Ref. 3:p. 32] Also

identifying significant business rules at the design level,

allows them to be loaded into a repository for future reuse.

[Ref. 3:p. 32]

A second reason for re-engineering is that it can save

money if executed properly. The cost of software maintenance

is a huge expenditure of present information technology

budgets. The worldwide estimate of software is over 100

billion lines of code, with COBOL comprising 80% of the total.

[Ref. 3:p. 32] Further-more, maintenance of existing

applications are estimated to consume more than 70% of

22

www.manaraa.com

programming resources . [Ref. 12:p. D12-2] Proper re-engineered

systems produce more maintainable software. Re-engineering

existing, especially older, software systems provides a new

aspect to the "make or buy" decision that many organizations

face. It also offers to reduce the software maintenance

financial burden by making code more maintainable. Perhaps the

greatest reason organizations are considering re-engineering

alternatives is that many older systems are still quite

useful. But they must be able to be modified rapidly to

respond to changing business conditions and strategies. [Ref.

54 :p. 1] As written today, they cannot. Re-engineering these

often unstructured, undocumented older systems positions them

for rapid modernization.

Today, the DoD finds many of its software systems

difficult and costly to maintain. Many are unstructured and

documentation has often deteriorated and is quite poor. In

research conducted by Software Productivity Research, Inc.

,

when compared to other large industries such as insurance,

banking, manufacturing, telecommunications and oil, the DoD

allocates approximately 70% of its programmers to maintenance.

[Ref. 40:p. L-ll] This high percentage devoted to maintenance

is not surprising. The same research indicated the DoD leads

all other industries in the following:

23

www.manaraa.com

a. DoD portfolio size: portfolios total 300,000,000
statements and 1,750,000 function points. 9 [Ref.
40]

b. DoD portfolio average age: 13 years. The U.S.
portfolio age is 10 years. [Ref. 40]

3 . Metrics

Before an organization can determine its strategy for

re-engineering, it must first assess its current state of data

and processing capability. Using software metric tools to

evaluate the vitality of existing programs is usually the

first step in the re-engineering process. Two common metric

measurements in use today are function point analysis and

cyclomatic complexity analysis.

The first, function point analysis, is a function of

the weights of five different factors: inputs, outputs,

inquiries, interfaces and logical files. [Ref. 7:p. 46]

Function point analysis is language independent and provides

not only a measure of functionality and early complexity

estimation, but also serves as a indicator of program code

quality and software organization productivity. "One of the

advantages of the Function Point metric is that it can be used

to predict and measure all sources of software errors, and not

just coding errors." [Ref. 44]

9 A portfolio is defined as a set of active programs and
systems owned by an enterprise (typically 1 to 50 systems and 10 to
10,000 programs). Portfolio sizes range from 100,000 to
100,000,000 source statements. [Ref. 40:p. L-8] Function points
are discussed in greater detail in the next section of this
chapter.

24

www.manaraa.com

Cyclomatic complexity tools measure and assess the

branching logic of a program module. The greater the number

of unique and distinct paths through a module's source code,

the larger the value of the cyclomatic complexity. Empirical

evidence has revealed that modules with less than five paths

through its program logic will be easy to understand; between

five and 10 paths is considered not too difficult; 20 and

greater paths is considered high; and when the number of paths

exceed 50, the software is considered untestable. [Ref.

7:p. 237]

Tables 2-1 and 2-2 in Appendix D, display data

collected from more than 4 000 software projects studied by

Software Productivity Research, Inc. 10 Table 2-1 shows that

as the size of a system increases in terms of lines of code

(LOC) , the number of enhancements also increases. LOC is

simply the number of lines contained in the source code of an

application. An enhancement is defined as a new function

added to an existing system to meet new requirements. [Ref.

40:p. L-7] Table 2-1 also indicates that as system size and

enhancements increase, the productivity rate of programmers

decreases in both LOC per person year and function points per

10 Both tables were presented by Capers Jones, Chairman of
Software Productivity Research, at the National Software Re-
engineering & Maintenance conference on August 10, 1992. The data
contained in both tables appear in different forms in Mr. Jones'
book Applied Software Measurement (McGraw-Hill, 1991) . Mr. Jones
notes that his studies have a high potential for error content.
This is attributed to the fact that, according to Mr. Jones, "there
are no current U.S. or international standards for consistent
counting of software tasks and deliverables." [Ref. 7: p. 124]

25

www.manaraa.com

person year. This data indicates that as systems become

larger programmers are less productive . This is in a large

part influenced from the point that as programs get larger

they generally become more complex.

Table 2-2 depicts the impact of poorly structured

programs verses well structured programs. In the COBOL

programming language, poor structure is characterized by a

program that has numerous branches through its logic, e.g.,

many GOTO statements. The first attribute in Table 2-2, Defect

Potential, accounts for defects from five different origins:

requirements, design, coding, documentation, and bad fixes.

[Ref . 44] Bad fixes are simply corrections to errors, which

in actuality create more errors. The next attribute is

Removal Efficiency, which is the percentage of errors removed

from a system before delivery to the user. In Table 2-2, the

removal efficiency of the poorly structured system is 10% less

than that of the well structured program. This is a

substantial difference. A program with a low Removal

Efficiency will have more errors surface later after a program

has been delivered to the user. This can be costly in terms

of maintenance. The U.S. average for removal efficiency is

85%, which is not a stellar percentage. [Ref. 44] The

ultimate goal is to have 100% removal efficiency. Large

corporations such as Motorola, Raytheon, Hewlett-Packard, and

IBM have achieved removal efficiency levels of 99% [Ref. 44]

Stabilization Period is the time it takes for a program, after

26

www.manaraa.com

it has been delivered to the user, to have errors debugged and

start working as specified. Mean Time to Failure is simply

the average time between failures in a program. There are two

fundamental principles that may be deduced from these tables:

a. As a system grows in size, programmer produc-
tivity decreases. Therefore, an organization
should know the extent and nature of its data
inventory before attempting a re-engineering
project. An organization must know "where it
is, " in terms of their data, before it determine
"where it wants to go" if re-engineering is under
consideration.

b. If metric analysis is not conducted, an organ-
ization will not have an accurate picture of its
applications. An IBM study on maintenance costs
revealed that if a system required more than 12%
of its code to be changed, it would be prudent,
economically, to scrap the system and start over.
[Ref. 20 :p. 4] Metric analysis will aid an
organization in understanding trouble spots in
its systems and thus provide a means for evaluat-
ing the need to re -engineer. Re-engineering will
provide better structured code. Otherwise, an
organization may continue to maintain costly
systems.

Metrics analysis cannot be overlooked in a re-

engineering effort, especially for large systems. It should

be one of the first areas of consideration when re-

engineering. Function point and complexity analysis are two

means used to diagnose the problem areas of a program. Metric

analysis allows developers of a system the ability to

understand the "vital signs" of a program. That is to say,

trouble spots in a program' s logic can be isolated and

corrected. This will in turn make programs more structured

and maintainable.

27

www.manaraa.com

4 . Savings

Software re-engineering is a growing market and

leaders in the software field champion its use for the right

programs, and its potential benefits. However, there

presently is little empirical or quantitative evidence to

support that software re-engineering will always provide cost

savings. In fact, there have been some costly failures. Not

every old program should be re -engineered. However, a

significant amount of anecdotal data does support that

software re-engineering can provide significant savings over

the maintenance life of a system.

Re-engineering is not a generic process. That is to

say, each application considered for re-engineering is

different, just as each organization's corporate culture is

different. Thus, a re-engineering process that worked for one

organization may not necessarily work for another. But, with

good software engineering program management and employment of

a disciplined methodology, the risk of failure may be

significantly reduced.

One example of cost savings from a software re-

engineering effort was an Army project. The Army Institute

for Research Management Information, Communications and

Computer Sciences (AIRMICS) , the U.S. Army Information Systems

Software Development Center-Atlanta, and the Software

Engineering Research Center of the Georgia Institute of

Technology completed a re-engineering project using CASE

28

www.manaraa.com

tools. The re- engineered Army Installation Material Condition

Status Reporting System (IMCSRS) was completed in June 1991

and was distributed to 40 Army installations. The total cost

for re-engineering the system was $186,394. [Ref. 45 :p. 26]

The estimated net present value cost-benefit for all the sites

using the system, based on an estimated 10 year lifetime for

the system, was estimated to be $3,187,240 after deducting the

re-engineering development costs. [Ref. 45 :p. 26] The net

present value analysis revealed the following [Ref. 45 :p. 26] :

a. internal rate of return (IRR) : 131.4%

b. recovery of development costs expected within
0.44 years

c. overall benefit to cost ratio:

Even though the Army re-engineering effort is an

isolated case, it shows growing evidence that re-engineering

can provide significant rewards.

5. Potential Benefits

The main objectives of most commercial businesses are

to increase market share and produce a profit. When

technology offers not only a means to increase profit, but

also a means to maintain and build better products with

enhanced capabilities, organizations will most likely devote

a portion of their resources to acquire such technology.

Software re-engineering offers these potential benefits.

Even though re-engineering is still in its infancy, it is

receiving significant attention from government and private

29

www.manaraa.com

industry. The following is a list of five re-engineering

benefits [Ref. 3:pp. 33, 36]:

a. Reducing Software Maintenance Efforts.
Maintenance consumes a large portion of
information technology budgets. Re-engineering
can produce better structured code, which is
easier to maintain, and thus less costly.

b. Preserving Investment. The cost of software is
high. Not only the cost of the software itself,
but the cost of the manpower needed to write,
manage, and maintain the software is substantial.
Organizations naturally want to maximize their
investment in software to ensure that it
continues to function productively.

c. Increasing the Productivity of System
Maintainers. CASE and I -CASE tools automate
many tasks that were once manual. As developers
become more proficient in using CASE and I -CASE
tools in a re-engineering environment, they will
increase their skill level. This will provide
additional time for developers to concentrate on
more productive tasks.

d. Enabling System Conversion and Migration to New
Hardware. As vendors upgrade their hardware,
some organizations may wish to change (migrate)
to new computing platforms.

e. Enabling the Reusability of Existing System
Components and protecting and extending the
system's life. Repositories facilitate this
capability.

Interestingly, as a result of software re-engineering,

the total lines of code of a new system may increase or

decrease. This is usually dependent upon the original

system's size, complexity, and programming language. The key

benefit of a successful software re-engineering effort is that

a new system will be better structured. It will also be

better documented. This will allow for easier future

30

www.manaraa.com

maintenance. The following section will discuss some of the

limitations associated with software re-engineering.

C. RE-ENGINEERING LIMITATIONS

While software re-engineering offers definite benefits, it

is not a panacea to answer all the problems involved with

software maintenance. For instance, re-engineering using

CASE and I -CASE tools is not without its challenges. One of

the major problems facing the CASE and I -CASE industry is that

most of the tools, specifically data repositories, are

proprietary. Many systems thus cannot communicate and work

with each other and organizations are often limited in their

selection of re-engineering tools. It should be noted that

re-engineering tools are no substitute for good management,

methodology, or software engineering techniques. Re-

engineering limitations are both technical and managerial.

1. Technical Considerations

Since re-engineering encompasses reverse engineering,

existing program code must first be brought to a higher level

of abstraction in order to be forward engineered to a new

form. A problem may arise if the higher abstraction level

does not capture all the significant properties of the

original program code. There is presently a fundamental

limitation of re-engineering technology in recognizing the

difference between semantic (logical design) and syntactic

(physical design) . Technology is at a state where CASE tools

can understand the syntax of source code, e.g., a branching

31

www.manaraa.com

operation or a loop. But these tools do not understand the

semantics, i.e., what is actually meant in the source code.

This is a primary reason why re-engineering requires domain

experts to physically intervene in the process. [Ref . 39 :p. 5]

According to Ravi Koka11
, the missing link in reverse

engineering is the loss of the original business intentions of

a system between the physical model (source code) and logical

model (higher abstraction). [Ref. 12:p. D12-2] According to

Mr. Koka, the major factors that contribute to the "missing

link" are [Ref. 12]

:

a. Cryptic Source Code. Numerous older systems were
developed more along artistic rather than
structured guidelines. As a result these
programs are hard to understand. The only people
that truly know the system are the people who
created it.

b. Personnel Turnover. All corporate knowledge of a
program may reside in the people who created it.
When they leave the organization, the system, if
left in a cryptic form, will be hard to maintain.

c. Patches to Programs. They tend to make programs
less structured and understandable.

d. Poor Documentation. This is in the form of both
poor source code documentation as well as poor
and outdated system's manuals. Without adequate
documentation subsequent programmers and analysts
encounter great difficulty in determining the
business rules and structure of a system. In
some cases the documentation is so poor the
system cannot be re -engineered and must be
created from scratch.

11 Mr. Koka is President of Software Engineering and
Enhancement Center, Inc. Mr. Koka was a guest lecturer at the CASE
World Conference & Exposition in Santa Clara, California on
February 20, 1992.

32

www.manaraa.com

The current state of re-engineering technology only

allows source code to be reverse engineered to the design

level, not to the analysis level. [Ref. 10 :p. 26] This is

presently a re-engineering limitation.

2 . Management Considerations

Some simple facts about software re-engineering are

that it is expensive, time consuming and complex. A typical

three to six week reverse engineering training session by a

major consulting firm can range from $50,000 to $400,000 for

a large system. When other services, such as forward

engineering utilizing CASE tools are added, the cost can range

from $200,000 to $1 million for the initial re-engineering

project. [Ref. 11 :p. 52] Depending on the condition of the

existing code, the reverse engineering cost can range between

$30,000 to $100,000. Resystemization entails migrating an

existing system to a new environment through the use of CASE

tools. The cost for resystemization can range between

$100,000 and $600,000. The cost for the re-engineering

services can range between $500,000 to $1, 000, 000

,

12

It is essential that organizations first conduct a

thorough analysis of their data inventory and assess their

requirements for re-engineering. Management must insist upon

it. Such a self assessment is critical because re-engineering

may not always be in the best interest of an organization.

12 This information was collected in a phone conversation the
author had with Richard Phelps of Ernst & Young on May 18, 1992.

33

www.manaraa.com

For instance, if a system's documentation is poor, or non-

existent, re-engineering can't reincarnate it into a new

system. Thus, an organization would be better off starting

from scratch to develop a new system. One consequence of not

conducting an internal analysis may be that after an

organization expends the capital for CASE, or I -CASE tools,

the tools end up becoming shelfware and not used because the

system cannot be successfully re -engineered. The old adage

"you can't fix what you don't understand, " is quite applicable

to software re-engineering.

Management should consider a methodology that brings

organization and discipline to the re-engineering process.

The following is one high level approach that consolidates a

re-engineering project into five major steps [Ref. 39] :
13

a. Determine the systems functional requirements:
what should the new system accomplish?

b. Make a technical assessment of the current
System: how does the current system accomplish
its functions?

c. Develop a new conceptual system model: how should
the new system complete its functions, i.e., what
hardware/software configuration is needed?

d. Develop a scenario analysis: what are the
alternatives in implementing the new system,
i.e., does the organization need to re-engineer?
How do the alternatives compare in terms of
percentage of code reuse, tools used, cost
savings and risk?

13 This approach was presented by James Rothe of Andersen
Consulting at the National Software Re-engineering & Maintenance
conference on August 12, 1992, in San Jose, California.

34

www.manaraa.com

e. Develop an implementation plan: this includes
detailed work-plans, tool assessment and
selection, project phasing and risk management.

Many older systems, some being mission critical, are

reaching the end of their useful life. Organizations are

faced with the task of updating these systems to conform to

present demands. But with shrinking budgets and fewer

trained people, this is getting harder. Re-engineering falls

within the strategic and operational levels of corporate

decision making. Re-engineering requires talented people with

adequate training and senior management endorsement. But

senior management endorsement encompasses more than vague

knowledge of software technology. Senior managers must

understand the full impact that re-engineering will have on

the culture of the organization, and the consequences and

pitfalls that may be encountered when attempting a re-

engineering project. [Ref. 13 :p. D24-11] Some common re-

engineering pitfalls are listed in Table 2-3. Everyone

associated with re-engineering, from senior management to the

software participants, should be aware of such pitfalls and

take action to mitigate the impact of each one.

D. A TAXONOMY OF A RE-ENGINEERING PROJECT

Re-engineering may not only consume a large portion of an

information technology budget, but also requires integration

with corporate level strategic and tactical planning. It is

by thorough planning that re-engineering objectives are

35

www.manaraa.com

defined and disseminated throughout an organization. The

following sections deal with the criteria for selecting a

project and factors that contribute to a successful re-

engineering effort.

1. Re-engineering Selection Criterion

Not all systems are candidates for re-engineering. The

following criterion offer a guideline to use for assessment of

target systems for re-engineering [Ref. 2]:

a. Importance of the program or system to the
company's operation.

b. Ease of maintenance: program metric tools allow
personnel to measure the complexity of a system'

s

source code and determine the quality of the
code and ease of maintenance. Generally,
programs with a high level of complexity are good
candidates for re-engineering.

c. Current reliability: this is a measure of failure
rate within a system. If a system has numerous
revisions to its code, chances are the system
will have a high failure rate. Systems with high
failure rates are candidates for re-engineering.

d. Frequency of maintenance. If a system is
frequently requiring maintenance it is likely to
become unstable. Programs like this are prime
candidates for re-engineering.

e. Timing. If a program is maintained by the
creator of the program or a maintenance
programmer who has intimate knowledge with the
program, then the program may not be a good
candidate for re-engineering. This is because of
programmers' proprietary attitudes toward their
creations. They are reluctant to re-engineer
their programs. Only through personnel turnover
and the addition of new personnel to the
maintenance of a system will proprietary
attitudes relax, thereby easing the resistance
to re-engineering.

36

www.manaraa.com

2. Cost Factors

There are models such as the constructive cost model

(COCOMO) that provide in-depth analysis for judging the costs

in developing a software system. However, there are no formal

cost models used exclusively for re-engineering.

. it is important to note that even traditional
estimation models are not wholly applicable to re-
engineering projects . For example, re-engineering project
development costs are reduced since test cases and design
information are already completely or partially present
(left over from the original development process). [Ref.
30:p. 16]

Costs incurred during software re-engineering will

vary among different organizations. However, there are some

common variables that organizations should consider. A re-

engineering study conducted by the National Institute of

Standards and Technology (NIST) and the Internal Revenue

Service (IRS) concluded:

The cost-effectiveness and feasibility for re-engineering
a particular software system will be dependent on a number
of variables that are specific to that system and the
approach taken. These variables are: the goals for re-
engineering, condition of current application system and
documentation, tool(s) support, and involvement of
knowledgeable personnel. [Ref. 38 :p. 13]

Appendix A displays a prototype methodology for

determining if re-engineering is a feasible option for an

organization to take. The methodology was developed by the

Software Technology Support Center at Hill Air Force Base,

Utah. [Ref. 30]

37

www.manaraa.com

3. Steps Involved With a Successful Re-engineering

Process

In September 1990 Price Waterhouse opened its Re-

engineering Center in Tampa, Florida to assist clients with

their re-engineering efforts. According to Steve Errico, a

partner at Price Waterhouse, there are nine distinct steps

involved with a successful re-engineering process. Each step

in the re-engineering process requires the use of CASE tools.

[Ref. 54:p. 3] The nine steps are as follows [Ref. 54]:

a. Metrics: analysis of code quality and complexity;

b. Inventory: identification and location of
affected components, i.e., this identifies parts
of a program that re-engineering will have an
impact on;

c. Analysis and documentation: understanding
functional characteristics of the existing
system, this includes identifying program
components that may require engineering;

d. Data reverse engineering: understanding the
nature of existing data, i.e., identifying the
relationships and meaning among the data and
obtaining control of the data;

e. Process reverse engineering: understanding the
nature of existing program code, i.e.,
understanding the semantics embodied in the code;

f. Data conversion: moving data into the new
database environment, i.e., moving from a
hierarchical to a relational database;

g. Analysis and design of the new system;

h. Code generation;

i. Testing and verification.

38

www.manaraa.com

E. SUMMARY

This chapter has provided a broad overview of software re-

engineering. Re-engineering is a function of reverse

engineering and forward engineering. Definitions were

provided to lay the ground work for understanding the re-

engineering process, followed by discussion of the

relationship and distinction between re-engineering and

reverse engineering. Reverse engineering is the first step in

the re-engineering process. It consists of using CASE or I-

CASE tools that enable developers to raise program source code

to higher levels of abstraction. Reverse engineering

culminates with the population of design elements into a data

repository. Forward engineering is the second part of re-

engineering. It takes the design elements within a data

repository and uses CASE and I -CASE tools to create a newer

version of the original system. But CASE and I -CASE tools are

only aids in the re-engineering process. Successful re-

engineering demands skilled and trained people, both managers

and technical personnel, to become proactive in the re-

engineering process.

Re-engineering embodies both benefits and limitations.

In order to exploit potential benefits, it is necessary to

understand the nature of a system's source code. This chapter

discussed the importance of metric analysis as a means to

identify as well as understand program source code. Re-

engineering is not without limitations. This chapter covered

39

www.manaraa.com

both technical and managerial considerations that focus on re-

engineering limitations.

The chapter concluded with a look at how applications

are considered for re-engineering, followed by suggested steps

for a successful re-engineering effort. However, there are

few documented case studies that provide empirical and

quantitative evidence for software re-engineering. This is

attributed to the fact that re-engineering is still a young

and emerging industry.

40

www.manaraa.com

III. INTEGRATED -COMPUTER AIDED SOFTWARE ENGINEERING

The complexity of software development and the

requirements placed on organizations to meet customer needs in

a rapidly changing technology environment, have placed

software developers in a position where creating, maintaining

or re-engineering a system must be accomplished efficiently

and in a reasonable amount of time. Maintenance costs and

problems with data management plague both government and

private industry.

The evolution of CASE tools has enabled the automation of

certain parts of the software development cycle and has eased

some of the difficulties with data management and maintenance.

There are individual CASE tools that can address particular

areas of software development. For example, Knowledgeware has

three CASE products: Inspector, Pinpoint, and Recorder, which

do this. Inspector is a tool that measures the quality and

complexity of COBOL applications. Pinpoint is a maintenance

tool that enables programmers to see the interworkings of a

program, whether the program is unstructured or not. Recorder

is a restructuring tool . It can remove inexecutable program

logic and replace it with better structured program syntax and

reduce the number of test paths, thereby making updated code

easer to read and understand. [Ref . 47: pp. 5-9]

41

www.manaraa.com

This chapter starts with a definition for software tool

integration, followed by the difference between CASE and

I -CASE tools. Next, the key elements that constitute I -CASE

tools is presented. The chapter ends by discussing the

methodology, benefits and limitations of I-CASE and a synopsis

of the DoD I-CASE procurement.

A. A DEFINITION OF INTEGRATION

What is meant by tool integration? In simplistic terms,

integration means "components function as part of a single,

consistent, coherent whole." [Ref. 32 :p. 30] But to say that

CASE tool A is well integrated with CASE tool B requires

clarification. This is because both CASE tool A and CASE tool

B have similar and different characteristics. The following

sections review the four types of integration: presentation,

data, control, and process. 14

1. Presentation Integration

This form of integration allows users to interact

with different tools in the same way. [Ref .34:p. 8] The goal

of presentation integration is to improve the efficiency and

effectiveness of the user's interaction with the environment

by reducing his cognitive load. [Ref. 32 :p. 30] In other

words, presentation integration enhances productivity by

alleviating the need for the user to learn a different way to

14 In the March, 1992 issue of IEEE Software, Ian Thomas and
Brian Nejmeh propose a framework, based on previous work by Anthony
Wasserman, which defines integration and identifies the goals of
integration.

42

www.manaraa.com

interact with each tool. [Ref. 34 :p. 8] A simple analogy of

this is a pull down menu screen. These are menus that

basically spoon feed a user in moving from one tool to another

by displaying similar alternatives via screen display. This

allows the user the ability to initiate or terminate a task.

By keeping the menu screens simple and intuitive, a user does

not spend excessive time learning the characteristics of a new

tool

.

2 . Data Integration

The goal of data integration is to ensure that all the

information in the environment is managed as a consistent

whole, regardless of how parts of it are operated on and

transformed. [Ref. 32 :p. 30] CASE tools are considered well

integrated when they share a common view of data. [Ref. 32 :p.

32] For example, IBM's AD/Cycle Information Model. The

AD/Cycle Information Model defines the format and structure of

information stored in the repository. [Ref. 19 :p. 25] The

definitions stored in the repository are understood by the

different tools, which enables consistency, or a common view

of data. [Ref. 19:p. 25]

3 . Control Integration

The goal of control integration is to allow the

communication and sharing of information between CASE tools.

[Ref. 32 :p. 30] Control integration provides a transparent

means for users to communicate between tools. The user does

not need to know the interworking mechanisms of each tool that

43

www.manaraa.com

is used. [Ref. 34 :p. 8] For example, when a user clicks a

mouse, or hits a keystroke, they do not need to know the

electrical engineering aspects of the circuit gates that the

binary information transits.

4. Process Integration

The goal of process integration is to ensure that

tools interact effectively in support of a defined process.

[Ref. 32 :p. 30] In other words, the concept behind process

integration is the ability for several tools to work in

concert from analysis and design to code construction of a

system. A good example of this is Texas Instruments I -CASE

product Integrated Engineering Facility (IEF) . In a Computer-

world survey of 143 organizations using I -CASE tools, IEF

received the highest rating in integration as well as the

highest ratings overall. [Ref. 48 :p. 72]

B. INTEGRATION SUBCOMPONENTS

The four types of integration mentioned above are further

broken down into subcomponents that help explain how each

particular type of integration works. Figure 3-1 displays

some of the properties that compose each integration type and

the interaction they have upon a single CASE tool. Each

integration property shown in Figure 3-1 is discussed below.

1. Appearance and Behavior

This property addresses the ease the user has in

interacting with a tool, having already learned to interact

with another tool, i.e., "how similar are the tools' screen

44

www.manaraa.com

appearance and interaction behavior." [Ref. 32:p. 31] Two

tools are considered well integrated with respect to ap-

pearance and behavior if a user's experience with and expec-

tations of one can be applied to the other." [Ref. 32 :p.

2. Interoperability

This property addresses the issue of two tools being

able to view data as a consistent whole. [Ref. 32 :p. 32] Two

tools are considered well integrated with respect to inter-

operability if "they require little work for them to be able

to use each other's data." [Ref. 32 :p. 32]

3 . Nonredundancy

This property addresses and identifies redundancy of

data between two tools. An example of redundant data would be

several names for social security in a database, like SSN,

SOC_NUM, or SNUM. Integrated tools should minimize redundant

data. [Ref. 32 :p. 32] Two tools are considered well in-

tegrated with respect to nonredundancy if "they have little

duplicate data or data that can be automatically derived from

the other data." [Ref. 32 :p. 32]

4. Data Consistency

This property addresses the issue of tools being able

to manipulate data and pass the data on without loosing the

meaning of the data. Two tools are considered well integrated

with respect to data consistency if:

. . . each tool indicates its actions and the effects on its
data that are the subject of semantic constraints that also
refer to data managed by another tool. [Ref. 32 :p. 32]

45

www.manaraa.com

5. Data Exchange

In order for two tools to exchange data, the tools

must agree on data format and semantics. [Ref. 32 :p. 32] This

property addresses the issue of data generated and sent by one

tool and the ability of a second tool to manipulate the data

sent to it. [Ref. 32 :p. 32] Two tools are considered well

integrated in respect to data exchange if "little work on

format and semantics is required for them to be able to

exchange data." [Ref. 32 :p. 33]

6 . Provision

A tool is considered well integrated in terms of

provision integration if "it offers services other tools in

the environment require and use." [Ref. 32:p. 33] For

example, a project management tool requires textual task

descriptions. But in order for the text to be entered, it

relies on the services offered by the editing tool. [Ref.

32:p. 33]

7 . Process

A process step is the decomposition of a task per-

formed by different tools to carry out a process. [Ref. 32 :p.

34] In other words, to carry out a task, executions performed

by different tools achieve the accomplishment of a task. In

order for this to occur, any single tool's preconditions must

be met. "A tool's preconditions are satisfied when other

tools achieve their goals." [Ref. 32 :p. 34] Tools are

46

www.manaraa.com

considered well integrated in terms of process step

integration if:

. the goals they achieve are part of a coherent
decomposition of the process step and if accomplishing
these goals lets others achieve their own goals. [Ref.
32:p. 34]

8 . Event

There are two parts to event integration. First, a

tool's preconditions should reflect events generated by

another tool. Second, a tool should generate events that aid

in satisfying other tools' preconditions. [Ref. 32 :p. 34]

Tools are considered well integrated in terms of event

integration

. . .they generate and handle event notifications consis-
tently (when one tool indicates an event has occurred,
another tool responds to the event). [Ref. 32:p. 34]

9. Constraint

Each tool in a CASE environment has constraints by

which it operates. In other words, a tool may be designed to

perform functions within specified limits. Constraint

integration is described as:

There are two aspects to enforcing a constraint. First,
one tool's permitted functions may be constrained by
another's functions. Second, a tool's functions may
constrain another tool's permitted functions. Tools are
said to be well integrated with respect to constraint
integration if they make similar assumptions about the
range of constraints they recognize and respect. [Ref.
32:pp. 34 - 35]

47

www.manaraa.com

The framework discussed in this section attempts to

define integration in four areas: process integration, data

integration, control integration, and presentation

integration. Each of these respective types of integration

are further decomposed to detailed attributes that explain

their specific type of integration. This framework is by no

means the definitive answer to completely explain integration.

However, it provides the novice an intuitive explanation of

what is involved with the concept of integrating CASE tools

into a cohesive environment.

C. CASE VERSUS I -CASE

In contrasting CASE to the systems development life cycle

(SDLC) , CASE breaks out into upper CASE and lower CASE. Upper

CASE deals with the overall planning environment that a system

must operate in, equivalent to the analysis and design phases

of the SDLC, where the logical model of a system is defined.

Additionally, upper CASE tools create data flow diagrams and

entity- relationship diagrams that aid in the development of

the logical model. The major event in the upper CASE environ-

ment is development of a data dictionary and its population

with elements that will define the system. Lower CASE

facilitates the actual code construction, testing and imple-

mentation of a system. [Ref. 16 :p. 32]

In comparing I -CASE and CASE, there are two major dis-

tinctions that make I -CASE unique from CASE. First, CASE

tools only work on specific parts of the development life

48

www.manaraa.com

cycle. Different third party tools can not currently be

brought together and function as an integrated tool set. [Ref

.

33 :p. 19] I-CASE tools are still proprietary products, but

they can integrate all aspects of the development life cycle

under one set of single vendor tools. Second, I-CASE tools

generate 100% executable program code directly from the design

specifications and models created earlier in the development

process and stored in a centralized repository. [Ref. 14 :p.

6] Some CASE tools can also generate code, but only partial

code for screens, reports and data definitions. [Ref. 27 :p.

45] However, other CASE tools can generate compilable and

executable code. So what is the distinction? The distinction

lies in that within an I-CASE environment, all the tools share

and understand the data. For example, if you change an

attribute to a data name, the change is automatically made so

that the other tools understand the change. The programmer

does not need to manually go in and update the change with

each tool. CASE tools cannot do this. To produce compilable

and executable code with CASE tools it takes manual human

intervention with each tool to ensure data consistency.

D. I-CASE REPOSITORY

The repository is the heart of the I-CASE system. A

repository is defined as a database that serves as the

mechanism for storing and organizing all information concer-

ning a software system; it is the single place in which data

can be entered once, kept consistent, and made available when

49

www.manaraa.com

needed. [Ref. 23:pp. 53, 57] The key aspect of the repository

is that it not only stores relationships among data, but

stores the meaning of the data as well. This is often

referred to as meta-data. 15 According to James Martin, there

are two types of repository used in the CASE environment, a

dictionary and an encyclopedia. The definition and

distinction for both are as follows:

ENCYCLOPEDIA. A repository of knowledge about the
enterprise, its goals, entities, records, organizational
units, functions, processes, procedures, and application
and information systems A dictionary contains
names and descriptions of data items, processes, vari-
ables, etc. An encyclopedia contains complete coded
representations of plans, models and designs with tools
for cross checking, correction analysis, and validation.
Graphic representations are derived from the encyclopedia
and are used to update it. The encyclopedia contains many
rules relating to the knowledge it stores, and employs
rule processing, the artificial intelligence technique, to
help achieve accuracy, integrity, and completeness of the
plans models, and designs. The encyclopedia is thus a
knowledge base which not only stores development infor-
mation but helps to control its accuracy and validity.
The encyclopedia should be designed to drive a code
generator. The toolset helps the systems analyst build up
in the encyclopedia the information necessary for code
generation. The encyclopedia "understands" the modules
and designs; a dictionary does not. [Ref. 28:p. 461]

It is important to point out that a knowledge base simply

contains the rules of a system; it does not perform any

artificial intelligence actions by itself. It is the rule

processing technique within the knowledge base that allows

data to be defined and formed as objects and allow the objects

15 Meta-data or "data about data" defines how data is struc-
tured in a repository, e.g., as a record, business entity, or
business process.

50

www.manaraa.com

to form relationships that can be further shared by the

system. For example, rule processing determines how processes

on a dataflow diagram, or elements of an entity- relationship

diagram, are linked and referred to. [Ref. 15 :p. 17]

Within every organization data can be classified in two

areas: business entities and business processes. "Invoice"

and "customer" are typical examples of a business entity.

Activities performed on a business entity, for example,

validation of a customer account number, is considered a

business process. During system design and development.

. . . business entities and processes are identified and
documented so appropriate representations of them may be
incorporated in procedures, programs, files, and databases.
Both the abstract representations and the computer systems
are often referred to as data and process models. 16 [Ref.
35:p. 3-6]

The design of a dictionary or a repository begins with the

identification of entities and processes. [Ref. 35:p. 3-6]

Meta-data, which is composed of meta-entities, constitutes

the basic building blocks of the repository. [Ref. 35 :p. 3-7]

Figure 3-2 describes meta-data as follows:

16 A data model is a representation or view of collected
data. Many current data models use the entity relationship
approach. This approach organizes data in terms of entities,
relationships, and attributes. A relationship connects two
different entities. For example, "officer assigned to engineering
department" is a relationship type. An attribute is a data item
that describes an entity or relationship. For example, an employee
can have a social security number and a wage. A process model
shows the flow of data, e.g., dataflow diagrams and entity-
relationship diagrams. [Ref. 35: pp. 4-4, 4-9]

51

www.manaraa.com

Customer and order are examples of business entities-

-

things of interest to the users of the business systems.
"Customer places order" is an example of a relationship
among business entities. [Ref. 35 :p. 3-7]

Frequently, specific record types in a database contain
data about specific business entity types. In this
example, there are records containing data about custom-
ers, and records containing data about orders. [Ref. 35 :p.

Programmers and analysts are interested in the descrip-
tions of the records and databases. Thus, record and
database are the entities of interest. Data dictionaries
and repositories, designed to store the descriptions of
these data entities, contain meta-data about data enti-
ties. In this example, there are meta-data records that
contain meta-data about records and relationships among
records. [Ref. 35:p. 3-7]

Designers and users of data dictionaries and repositories
are interested in the descriptions of the various types of
meta-data records used to store this meta-data. [Ref.
35:p. 3-7]

The meta-data approach displayed in Figure 3-2 enables a

repository to have the flexibility to add more meta-data, and

to integrate other software products to the repository.

Not all repositories are structured as knowledge bases.

Some repositories such as Digital Equipment Corporation's

Cohesion CDD/Repository, uses an object oriented database. 17

Other repositories are developed as hierarchical, network, and

relational databases. International Business Machines (IBM)

Repository Manager/MVS, structure their repository on data

17 Object orientation view data as separate from the way it is
used. In the object oriented approach, data and the procedures that
use the data are combined into objects that are described in terms
of data and procedures taken together. Anything of interest to the
system or the users of the system may be considered an object.
[Ref. 35:p. 3-10]

52

www.manaraa.com

semantics incorporated within an entity- relationship model.

Data semantics emphasize identifying data entities as places,

persons, events or concepts and defining the relationships and

associations between them. [Ref. 19 :p. 121]

The repository not only acts as a central common database

for data storage, but also allows the sharing of data between

diagramming tools. James Martin refers to automated diagram

tools like data flow diagrams, action diagrams and entity-

relationship diagrams as the means of translating data into

different abstraction forms. They also serve as a means for

populating the repository with the requisite information

needed for planning, analysis, design, construction and

maintenance of a system. In order for the diagram tools to

achieve this, they must be tightly integrated. 18 Therefore,

a rigorous methodology or standard must be enforced to enable

diagram tools to share and move data from one representation

form to another. [Ref. 14:pp. 6-18]

The integration standard is the key to making a repository

work. [Ref. 17 :p. 4] It assures consistency and quality of

data are achieved within a repository. As shown in Figure 3-3

an integration standard is a high level syntax language

18 For example, assume an entity- relationship diagram contains
the entity named employee. Employee is a field that contains 10
characters. But during the development process, it was determined
that employee needed to have 15 characters vice 10. Tools that are
tightly integrated will allow changes to an entity in one phase of
development to be automatically updated and carried over into other
tools without manual intervention. Furthermore, the meaning of the
data is held constant and not altered.

53

www.manaraa.com

incorporated within a repository. It enables data created and

processed by one tool to be shared among different tools

without loosing the meaning of the data. [Ref. 17 :p. 4]

Within an I -CASE environment, all the tools are tightly

integrated. According to James Martin, it is the tight

integration among tools and the repository that drives the

code generator and allows the automatic generation of source

code. [Ref. 14:p. 23]

The fundamental requirement to achieving a viable and

productive development environment is the repository. What

makes the repository unique is the fact that it places the

decision maker closer to the system's requirements without the

intervention of application programmers. [Ref. 30 :p.

E . METHODOLOGY

The use of I -CASE tools themselves do not ensure produc-

tivity, quality or success in an application development. The

very nature of the demands placed on system development teams,

and the requirement for maintainable software, have required

development procedures to move from ad hoc "artistic" methods

to that of formal and structured procedures embodied by an

engineering discipline.

A methodology is a set of rules, steps and procedures that

are applied to a system to achieve a desired result. Two

common methodologies used with I -CASE tools are information

engineering and rapid application development. The following

two sections will discuss both methodologies.

54

www.manaraa.com

1. Information Engineering

Information engineering is a methodology that func-

tions as a guideline for project management and development

coordination throughout the development life cycle. [Ref.

18 :p. 11] It is defined as:

... an interlocking set of automated techniques in which
enterprise models, data models and process models are
built up in a comprehensive knowledge -base and are used to
create and maintain data-processing systems. [Ref. 14 :p.
46]

It also spans the entire life cycle of a system

including maintenance.

Information engineering consists of four stages:

Information Strategy Planning, Business Area Analysis, System

Design, and Construction. The process starts with a broad

concept of objectives at the Information Strategy Planning

phase and successively moves down the remaining three phases.

It gains refinement and detail until enough information is

collected to implement a system. [Ref. 14 :p. 48] The four

phases of information engineering consider the following:

a. Information Strategy Planning: Concerned with
top management goals and critical success fac-
tors, a high speed overview of the enterprise,
its functions, data, and information needs. [Ref.
14:p. 49]

b. Business Area Analysis: Concerned with what
processes are needed to run a selected business
area, how these processes interrelate, and what
data are needed. [Ref. 14 :p. 49]

c. System Design: Concerned with how selected pro-
cesses in the business are implemented in proce-

55

www.manaraa.com

dures, and how these procedures work. Direct end
user involvement is needed in the design of
procedures. [Ref. 14 :p.

d. Construction: Implementation of the procedures
using, where practical, fourth-generation lan-
guages, code generation, and end user tools.
[Ref. 14:p. 49]

Some I -CASE products like Texas Instruments Integrated

Engineering Facility (IEF) , incorporates the information

engineering methodology. There are non I -CASE products like

the Ernst & Young Navigator Systems Series, which are also

centered around the information engineering methodology. It

uses CASE, estimating tools and project management techniques

to develop systems. However, it is not tied to any specific

CASE tool.

The methodology used by an organization will depend on

several factors. These include such things as corporate

goals, target application, staff requirements and personnel

training levels. Not all I -CASE tools are tied to a specific

methodology.

2. Rapid Application Development

Rapid Application Development (RAD) is another

methodology used with I -CASE tools. RAD is a departure from

the traditional waterfall development methodology model. The

waterfall model starts with a feasibility study in which all

the requirements of a system are derived. Once the require-

ments are collected the process of design, programming,

testing, integration, and eventual deployment follow.

56

www.manaraa.com

However, there is a critical flaw with the waterfall model.

It is the assumption that all the users needs are captured and

identified in the requirements phase. This is seldom the

case. It does not account for change. [Ref. 26 :p. 37]

The purpose and objective of RAD is to provide system

development which is identified with high speed, high quality

and lower cost. [Ref. 36 :p. 11] Some organizations using

CASE tools may not realize their full productivity because

initial user specifications may be held static as the techni-

cal design, coding and testing is completed. This static time

may equate to several months, or even years before the system

becomes operational. During this time the needs of the system

may change

.

RAD ensures not only that the time between design and

implementation is greatly reduced, but that the user is

actively involved in the analysis and design phases of the

system. [Ref. 36 :p. 11] The factors that comprise the RAD

methodology are as follows:

a. Thorough involvement of the end user in the
design of the system. [Ref. 36 :p. 12]

b. Prototyping, which helps the users visualize and
make adjustments to the system. [Ref. 36 :p. 12]

c. Use of an integrated CASE toolset, which enforces
technical integrity in modeling and designing the
system. [Ref. 36:p. 12]

d. A CASE repository that facilitates the re-use of
well proven templates, components or systems.
[Ref. 36:p. 12]

e. An I -CASE tool set that generates bug free code
from a fully validated design. [Ref. 36 :p. 12]

57

www.manaraa.com

User involvement in the Construction Stage. This
stage is where the design of a system is final-
ized and built by both the users and developers.
This allows for details to be adjusted if
necessary. [Ref. 36:pp. 12, 14]

RAD is made up of five distinct phases: modelling,

prototyping, optimization, integration and deployment. [Ref.

25 :p. 29] The modelling phase includes the creation of

enterprise models, entity- relationship diagrams, and

functional decomposition models. Prototyping consists of

small development teams, usually four to seven highly skilled

programmers who interface with the users of a system, and

build prototypes that are continually refined until a system

is ready for implementation and deployment. [Ref. 24 :p. 10]

Optimization is when the system has been configured for a

specific environment, e.g., a payroll system, taking into

account the requisite database configuration, network

protocols, and hardware. [Ref. 25 :p. 29] Integration is when

the system is ready to operate in conjunction with other

systems. Deployment is when the system is complete and ready

to be used by the end user.

The benefits of using RAD are straight forward. Time

is money. End users of a system can start experimenting with

application prototypes from the onset of development. [Ref.

25 :p. 29] This allows any errors or misconceptions about the

development of a system to be corrected early. According to

William Baker of James Martin & Company, RAD allows a program

to be broken down to small segments, each segment is limited

58

www.manaraa.com

to around 1000 function points. [Ref. 24 :p. 10] This allows

the development team more flexibility and control.

The premise of I -CASE is that it can combine the

functionality of both upper and lower CASE tools, under one

framework. I -CASE tools enforce a development methodology.

Concerning methodologies, it should be noted that:

if you use dataflow diagrams for analysis and
object-orientation for design, you change the development
paradigm, requiring new information structures and
formats. Some CASE systems deal with such
incompatibilities by using bridges to automate the
exchange of information among tools. However, these
bridges obscure the basic problem- -the need for a
rigorous, integrated development methodology to ensure the
success of integrated CASE. [Ref. 32 :p. 69]

F. INTEGRATED ARCHITECTURE

For a CASE product to be considered fully integrated, it

must consist of horizontal, vertical, and cross -enterprise

integration. [Ref. 18: pp. 7-9] Horizontal integration

maintains integrity within each life cycle stage. It is based

upon data, activities associated to data, and interaction of

data. [Ref. 18 :p. 8] A key aspect of horizontal integration

is that each instance of an entity has only one unique

definition that is shared by all the tools that comprise an

I-CASE tool set. [Ref. 18:p. 8]

Vertical integration maintains consistency and integrity

to data from one stage of the development cycle to the next.

This is achieved by a tight coupling between separate tools

within an I-CASE suite. [Ref. 18 :p. 8] For example, the data

represented in an entity- relationship diagram created in the

59

www.manaraa.com

design phase will not loose its meaning when it is moved into

the production/building phase of an application development.

Cross -enterprise integration ensures that the data

definitions are consistent, and that data is shared throughout

an organization. This is achieved through the use of the

I -CASE repository. [Ref. 18 :p. 9]

G. I -CASE BENEFITS

Increased developer productivity and higher quality

structured systems are the two major benefits of employing an

I -CASE tool. I -CASE tools force users to adhere to

methodology standards . This gives the development process the

discipline required when addressing the myriad complexities of

both software development and re-engineering. The ability of

I -CASE tools to provide rapid prototyping enables system

developers and users the advantage of uncovering early flaws

in a system. This leads to better and earlier requirement

definitions.

I -CASE will not necessarily produce systems overwhelmingly

faster. Organizations typically save only 20% in overall

development time. [Ref. 39 :p. 9] And for the first few

developments there may be no savings in time. However, the

long-run savings is expected in the maintenance life cycle

phase. Organizations have experienced as much as a 69%

reduction in maintenance expenses for successful I -CASE

projects. [Ref. 39 :p. 9] Well structured systems require less

maintenance and enable future modifications with minimal

60

www.manaraa.com

complications. Table 3-1 displays the cost of adding

enhancements. 19 It clearly shows that a well structured

system can undergo enhancement modification in less time and

with less cost. The important thing to consider from this

table is that both CASE and I -CASE tools can achieve well

structured programs. In the long run, well structured systems

will translate into less maintenance requirements for a

system.

H. I -CASE LIMITATIONS

While there are many benefits, I -CASE should not be viewed

as a panacea. The goal of I -CASE is to eventually bring

different vendor tools together within a single integrated

environment. The four leading I -CASE vendors, Texas

Instruments, CGI Systems, Arthur Andersen and Knowledgeware,

all have I -CASE products that can work with other third party

CASE and I -CASE tools to a degree. But here is where the

difficulty lies. For example, Knowledgeware' s I -CASE tools

Information Engineering Workbench and Application Development

Workbench (IEW/ADW) may be able to take information from a

different vendor such as Texas Instruments IEF. However, in

so doing, you will usually loose functionality of the

information. This is because each tool models data

differently. [Ref . 49] Both I-CASE tools are similar in that

19 Table 3-1 reflects data collected by Software Productivity
Research, Inc., and presented at the National Re-engineering and
Maintenance conference on August 10, 1992 in San Jose, California.

61

www.manaraa.com

they support the information engineering methodology. [Ref.

50] However, IEW and ADW can be combined with other

methodologies and work better with different vendor tools.

[Ref. 50] A major difference between these two I -CASE tools

is that Texas Instruments IEF provides a rigorous, enforced

methodology (Information Engineering) within a tightly

controlled environment, Knowledgeware' s I -CASE tool does not.

[Ref. 50] "Knowledgeware' s products lack the high level of

integration intrinsic to IEF." [Ref. 50]

No vendor has yet produced a framework that can fully

integrate different third party CASE or I -CASE tools. There

are two limitations that hamper inter-vendor integration.

First, single vendor I -CASE tools, such as Texas Instruments

IEF, are proprietary and lock a user into a single

architecture. [Ref. 16 :p. 31] Second, there are no current

standards available for industry to follow. However, there

are current tool integration standards efforts underway. 20

Other standards initiatives:

. include government -backed, industry, and ad hoc
standards efforts aimed at data management, tool
portability, tool integration, and tool architecture.
Among these efforts, no single standard is likely to
supersede all other standards and independently guarantee
future environment integration. [Ref. 37 :p. 27]

20 Some of these CASE specific standards include: CASE Data
Interchange Format (CDIF) , Portable Common Tools Environment
(PCTE) , CASE Integration Standard (CIS) , and A Common Tool
Integration Standard (ATIS)

.

62

www.manaraa.com

In addition to the lack of integration frameworks and

standards, a major limitation of I-CASE is how organizations

employ it. I-CASE tools constitute a major financial

investment. It takes time, commitment to organizational

change, and qualified personnel to effectively use I-CASE.

I. THE DOD I-CASE PROCUREMENT

The DoD has a large inventory of software applications.

Many of these applications are old and unresponsive to

changing requirements placed on them. They also require high

maintenance costs. DoD MIS software applications run on

approximately 160 large mainframe computers, 400 mini-

computers and over 250,000 IBM MS-DOS compatible personal

computers. [Ref . 31] The main programming languages used in

these applications are COBOL 74, C, FORTRAN, Pascal and 4th

generation languages. [Ref. 31] Few of these applications are

portable across different hardware platforms. The main

problem facing the DoD is that many of its systems are

developed over multiple hardware platforms, operating systems,

and programming languages . This has created redundant

applications that cannot be shared among government agencies.

[Ref. 31] Since DoD's MIS applications are not portable to

open systems hardware environments, they can only run on the

proprietary hardware platforms in which they were created.

This has complicated DoD's training requirements and hampered

efforts to reduce costs and increase productivity. [Ref. 31]

63

www.manaraa.com

To overcome the complications above and improve

productivity in developing, maintaining and re-engineering its

MIS systems, the DoD is pursuing an I -CASE procurement. The

I -CASE procurement seeks to maximize the use of commercial off

the shelf (COTS) components and to enable the rapid production

of portable Ada software applications that comply with

National Institute for Standards and Technology (NIST)

Application Portability Profile standards. [Ref. 31] The

objectives of the I -CASE procurement are:

a. Improve software quality and productivity while
reducing the cost and risk associated with the
development of MIS software systems by establishing a
standard software engineering environment that
supports a formal, repeatable software development
process throughout the software development life
cycle. [Ref. 31]

b. Reduce software development and maintenance costs as
well as reducing the time required to respond to
changing user requirements. [Ref. 31]

c. Establish and provide a standardized, software
engineering environment that provides a fully
integrated set of Commercial-Of f -The-Shelf (COTS)
components supporting the entire life cycle. [Ref.
31]

d. Establish a software development environment that
supports the development of portable applications that
execute on open systems platforms, and reduces the
amount of source code that must be manually generated
to develop a CIM software application. [Ref. 31]

e. Provide an environment that will incorporate the reuse
of domain knowledge and source code to eliminate
manual source code development and improve software
productivity. [Ref. 31]

f

.

Provide an environment that supports a re-engineering
process for converting large MIS applications to an
Ada/Relational Database Management System (RDBMS)
implementation. [Ref. 31]

64

www.manaraa.com

g. Provide for the training and education of software
development personnel in the use of the environment
and the software development process supported by the
I-CASE environment. [Ref. 31]

The I-CASE procurement is a seven year contract that has

an additional three years for maintenance requirements. The

procurement requirements are divided into three tiers. The

first tier requirements are those that can be met with

existing technology. These can be considered the minimal

mandatory requirements. The second tier are requirements that

are not wide spread within the industry, but can be

demonstrated. These are more specific requirements that

potential vendors must be able to demonstrate. The third tier

is a migration plan for new COTS tools to be migrated into the

DoD I-CASE tool. The migration plan is unique in that it

takes into account that as technology evolves with I-CASE,

tier one and tier two will not satisfy all the I-CASE

requirements. The COTS requirement prevents vendors from

providing I-CASE tools exclusively for DoD. Therefore, if a

product is upgraded, DoD will not be isolated with tailored

I-CASE tools. [Ref. 51] This contract's Request for Proposal

was released to industry in August, 1992. Contract award is

projected for May, 1993.

J. SUMMARY

This chapter has examined a framework that identifies and

explains the elements for software tool integration. This

chapter also covered the distinction between CASE and I-CASE

65

www.manaraa.com

tools, the importance of a repository, and a review of two

methodologies used with I -CASE. A comparison between two

I -CASE tools, IEF and IEW/ADW, was discussed to highlight the

benefits and limitations of I -CASE. The DoD I -CASE

procurement was briefly discussed and the objectives that DoD

anticipates with I-CASE covered. Re-engineering is one of the

principle objectives.

One of the key items stressed in this chapter was the need

not only for a methodology to enforce procedures, but that

using I-CASE requires highly skilled and trained people.

Otherwise, the potential exists for development teams to only

create bad systems faster. Speaking at the CASE World

Conference & Exposition on February 18, 1992, Ed Yourdon

commented that "I-CASE tools do not make people smart- -smart

people use I-CASE." I-CASE tools cannot address every kind of

application, build systems for every type of hardware environ-

ment or use every type of database. [Ref. 29 :p. 10]

Having looked at the benefits and limitations of I-CASE,

the following chapter will summarize data collected from an

organization using an I-CASE tool in a re-engineering

capacity.

66

www.manaraa.com

IV. RE-ENGINEERING WITH I-CASE IN DoD: DATA COLLECTION

During the course of this investigation, civilian and

military organizations that were using I-CASE tools in a re-

engineering capacity were contacted for data. Additionally,

CASE/I-CASE vendors, research consultants, DoD research

facilities, and academic personnel were contacted to provide

background information on re-engineering and I-CASE theory.

The author also attended one CASE conference and one re-

engineering conference that provided information on the latest

trends in re-engineering and CASE technology.

Having completed an extensive review of the literature

available on re-engineering, CASE and I-CASE, the next phase

of the research was to see how an organization was using an

I-CASE tool. Three DoD activities were identified and sent a

questionnaire. However, only one of these activities

responded. Even though the information obtained through the

questionnaire and phone conversations with the facility did

not reveal statistically relevant data, the responses

nevertheless contained valuable information that helped in

understanding how an organization adapted, learned and used an

I-CASE tool for re-engineering.

A. DATA SEARCH

Upon the onset of this research, collecting data appeared

to be simple and benign. This initial view soon faded. With

67

www.manaraa.com

the exception of Texas Instruments, most I -CASE vendors were

reluctant to reveal clients that were using their products.

This was because many of these vendors had non-disclosure

agreements with their clients to ensure confidentiality.

Military installations were somewhat more receptive. However,

with what the researcher perceived to be sensitivity

surrounding the current DoD I -CASE procurement, some military

organizations were hesitant to disclose too much information

regarding their own re-engineering efforts. The remainder of

this chapter is devoted to the discussion of the results

obtained from a questionnaire and numerous phone conversations

with the one DoD activity that had been using an I -CASE

product for re-engineering a 250,000 (LOC) COBOL program.

B. INQUIRY BACKGROUND

The military organization that agreed to share information

on their re-engineering efforts is located on the east coast.

A questionnaire was developed and mailed to the facility.

Friendly and cooperative bilateral communication was

established through phone conversations with this facility.

This was useful in clearing up any misconceptions and problems

with the questionnaire, and provided an avenue to collect

additional data. Appendix B is a copy of the questionnaire.

C. INFORMATION SOLICITED

The objective of the data collection effort was to obtain

information that would provide an indication as to how an

68

www.manaraa.com

organization is adapting and using an I -CASE tool for a

software re-engineering project. The questionnaire, plus data

collected via phone conversations, specifically focused on the

following attributes:

1. Re-engineering: what was the initial state of the
original system's source code and documentation? Did
the organization have data administration policies in
place that set standards?

2

.

What type of training was provided for the users and
what were the lessons learned from the training?

3. Learning curve: how long did it take the users to
become acclimated and proficient in using an I-CASE
tool and its associated methodology? Was there any
resistance to using I-CASE?

4. Performance: did the I-CASE tool meet the expectations
of the users? If no, what areas were deficient? If
yes, in what areas was the tool superior?

D. DATA RESULTS

The results from the questionnaire provided a useful

example for information as to how a development team adapted

and employed an I-CASE tool. The answers associated with the

four attributes mentioned in the previous section are

discussed in the following sections.

1. Re-engineering

The organization is using an I-CASE tool for

re-engineering one system that had poor and out of date

documentation. The original system consisted of 48 entities

and approximately 250,000 lines of source code. The source

code was characterized as being unstructured "spaghetti" code

that had been modified numerous times over its 15 year life.

69

www.manaraa.com

Function point analysis was used only to a small degree to

determine the complexity of the source code. Surprisingly,

this facility does not have a set data administration policy.

They indicated that this is an area that needed to be

addressed.

2 . Training

Twelve people were initially chosen for training. The

organization began training with third party vendors and

consultants to learn methodology, business area analysis,

database training, strategic planning, code construction and

other areas relevant to an I -CASE environment. Even though

this training was less expensive, the organization felt that

the training was not adequate. It was determined that

training should be sought from the vendor of the I -CASE tool

being used. This action was taken. The 12 members that

attended the initial training from third party vendors and

consultants also went through training provided from the

I -CASE vendor. Even though the I -CASE vendor training was

more expensive, it was determined that the level of training

was superior than what third party vendors or consultants

could provide. The training consisted of five classes. It

was estimated that each of the five classes cost $1,200 per

person. The lesson learned was that the I -CASE vendor should

Have been sought from the start to provide training.

70

www.manaraa.com

3

.

Learning Curve

With the benefit of the on-site schools plus hands on

experience with the I -CASE tool, it was estimated that it took

six months for a person to become fully comfortable and

proficient with the I-CASE tool. Initially some of the

"older" personnel on the development team were resistant to

using the I-CASE tool, especially with the concept of code

generation. As the team progressed and became more

proficient, the initial resistance soon faded. In fact, as

the project nears its completion date of October 1992, the

entire development team has become "sold on" I-CASE. There

were no concepts or areas identified as being difficult to

become proficient in. The 12 people selected for training

were hand picked and considered the most qualified for the

training. As the initial 12 members completed their training

and began working with the I-CASE tools they taught other

members within the organization.

4 . Performance

There were no comments indicating that the I-CASE tool

was deficient in its performance. However, it was noted that

it took a considerable amount of time to accomplish tasks with

the I-CASE tool. This was because the I-CASE tool being used

(Texas Instruments IEF) requires strict adherence to

procedures in its methodology. IEF uses the information

engineering methodology. The DoD activity had not previously

used this methodology. One of the team leaders commented to

71

www.manaraa.com

the author that this was not necessarily a limitation. It

took time because there are many procedures to learn and

become proficient in. Coupled with the time needed to learn

the methodology and the procedures for using the I -CASE tool,

other factors to consider are the size and complexity of the

application being re -engineered. Besides the. comment on the

time expended on a task, the I -CASE tool received high marks

on performance.

E. SUMMARY

When asked about meeting deadlines for the project, the

questionnaire revealed that 95% of the schedule deadlines were

met. The inability of not meeting the other five percent was

attributed to procurement problems of not being able to obtain

the needed tools on time. One of the interesting things

observed from the phone conversations with this facility was

the utmost confidence in the I-CASE product being used. But

this facility is an isolated case. The results of the

questionnaire should not be viewed as a barometer for all re-

engineering efforts with I-CASE. However, the questionnaire

and the data obtained through phone conversations was able to

provide some insight into an organization's experience using

an I-CASE tool.

72

www.manaraa.com

V. CONCLUSIONS AND RECOMMENDATIONS

This research has investigated the theory and use of

I-CASE tools in a re-engineering environment. While results

from the questionnaire represent a limited view of I-CASE

utility for re-engineering, they have common traits with data

collected from phone conversations, seminars, and electronic

mail correspondence. The remainder of this chapter will focus

on the conclusions, answers to research questions, lessons

learned, and recommendations derived from this research.

A. CONCLUSIONS

Some of the literature and discussion surrounding I-CASE

can be misleading. Theory and practicality have a way of

being blurred if one does not pay careful attention to the

actual capabilities of I-CASE tools. For instance, the theory

behind I-CASE is that it can cover the entire software life

cycle. This may be true. But it does not automate the entire

life cycle process for existing systems not developed with the

tool! An old COBOL program cannot simply be loaded into an

I-CASE tool, and with a few key strokes, a new and improved

COBOL program is reborn.

I-CASE tools are only as good as the information that

people put into them. [Ref. 52] One may expect when re-

engineering into an I-CASE environment that significant manual

intervention will be required. Skilled people will initially

73

www.manaraa.com

have to go over the old program line by line in order to

obtain preliminary information of the structure of the pro-

gram. It should be remembered that the "A" in CASE and I -CASE

means "aided.

"

There was a common characteristic between the data

collected with questionnaires and the contacts with I-CASE

vendors, consultants, academicians, and users. Software re-

engineering using I-CASE requires skilled and motivated

people. It will take several trained individuals using an

I-CASE tool to develop or re -engineer a system. Individuals

must be motivated to overcome initial failures and setbacks.

One should not perceive re-engineering a software program as

a quick or inexpensive process. It is neither. But if

properly done it offers sizeable cost savings over a system's

life.

If inadequately trained and unmotivated people are using

an I-CASE tool, the chances of success are slim. The

organization will eventually realize that they are only

producing lousy systems faster. This will eventually result

in increased maintenance costs. In such cases, the utility of

the I-CASE tool will have been of little value.

In the re-engineering case study conducted by the NIST

and the IRS, cited in Chapter III, it was concluded that:

Performing re-engineering requires a highly trained staff
with experience in the current and target system, the
automated tools, and the specific programming languages
involved. Application system experts must be involved
throughout the re-engineering process; they are essential
for design recovery. Software engineering is a complex and

74

www.manaraa.com

difficult process. The success of an organization's
application of this technology will be determined by the
level of commitment made by the organization. [Ref. 38]

The corollary to inadequate use of I -CASE is that it can

produce better and enhanced systems and achieve savings both

in development and maintenance. But two paramount items must

be in place to assist an organization that chooses to use an

I -CASE tool in a re-engineering capacity:

1. Senior management must endorse the establishment of
goals. Support of a project means more than being
vaguely aware of what re-engineering and I -CASE
technology can accomplish. To set priorities, establish
goals and make sound decisions, senior management must
be educated in the software development process and the
capabilities and limitations of I -CASE; and

2. An established, functioning data administration policy
is required. An organization must have a means to
standardize its data administration, i.e., policies that
set requirements for creating, controlling and
maintaining data. This prevents the duplication of
data.

Miracles should not be expected overnight with software

re-engineering. But with thorough planning and pro-active

support from both management and technical personnel, software

re-engineering can provide beneficial systems.

B. ANSWERS TO RESEARCH QUESTIONS

In this section, answers to the research questions stated

in Chapter I are presented.

1. From DoD's standpoint, what needs to be considered, as

well as avoided, in re-engineering its inventory of

75

www.manaraa.com

systems within an integrated computer aided software

engineering (I -CASE) environment?

According to Dr. Bill Curtis of the Software

Engineering Institute at Carnegie -Mellon University, the first

thing to look at is what types of systems are candidates for

re-engineering. CASE and I-CASE are best suited for

management information systems (MIS) , not embedded real-time

weapon systems. [Ref. 53] Embedded weapon systems are

primarily written in assembly language and require extremely

fast processing times. MIS applications' are primarily

transaction processing systems and do not have as near the

time critical operational requirements as embedded weapon

systems.

Dr. Curtis stated there are two important issues that

DoD should consider for moving into a re-engineering

environment using I-CASE. First, management must plan, track,

and control the re-engineering process. [Ref. 53] The

infrastructure must be in place that integrates the actions

and talents of both technical and managerial personnel. This

will set the stage for moving to an automated environment.

Second, for what ever system is under consideration, it is

important to determine what data is to be captured, and how

well can that data be structured in order to build the data

model. [Ref. 53]

What should be avoided? Quite simply, attitudes. DoD

should not build too many expectations that I-CASE is here to

76

www.manaraa.com

answer its problems with software. As mentioned throughout

this thesis, I-CASE tools are aids; people are the critical

element in the re-engineering process.

2. What are the current problems facing the CASE and

I-CASE industry?

The major problem facing the CASE and I-CASE industry

is that there is no current integration standard to

completely integrate the various CASE and I-CASE tools

together under one framework. While IBM's AD/Cycle and

Digital's Cohesion are attempts to offer an integration

framework, there are still problems. For instance, a

developer mixes CASE tools, and then changes a design element

in one tool, the change may not cross over and be updated by

a different tool. Another problem in this area can arise when

one vendor upgrades its product; other vendors' tools may not

be fully compatible with the new upgrade. While vendors

strive for compatibility with their products, the wide variety

of other vendor products, which are also undergoing continuous

change, almost always mean there will not be full

compatibility with these other vendor products. I-CASE

tools, produced by a single vendor, do not have this problem.

I-CASE tools and data repositories are still proprietary

products and lock a user into a specific tool. A second

problem facing the CASE industry is that as CASE and I-CASE

technology evolves, smaller, and less influential companies

will either fold or be bought out by larger and more powerful

77

www.manaraa.com

companies. This has already happened. DoD should take into

consideration a vendor's business future when assessing

contractual commitments

.

3. Can re-engineering using I-CASE tools produce viable

systems for DoD?

Since empirical evidence on this issue for the

commercial market has yet to be gathered, it was not unusual

to not find data that could conclusively answer this question

for DoD. However, there are examples of successful re-

engineering projects that have migrated to an I-CASE

environment in the civilian market. This should encourage the

DoD to pursue such projects. There are certainly many old,

maintenance intensive systems in the DoD inventory that are

still of critical importance. The planning should begin today

to identify likely candidates and initiate the management and

organizational support such projects will require for success.

Thus, when the DoD I-CASE tools are delivered, re-engineering

of selected projects could commence. The major factors that

can increase the likelihood of success, as discussed in this

paper, are that of pro-active management, using the most

skilled people, and a structured, disciplined methodology with

I-CASE.

78

www.manaraa.com

4. How many systems within DoD warrant re-engineering?

This question was asked of the Standard Systems Center

at Gunter Air Force Base, the Software Technology Support

Center at Hill Air Force Base, and the Software Engineering

Institute at the Carnegie -Mellon University. The answer from

all three locations was the same: no idea. In a phone

conversation with a source at the Software Engineering

Institute, it was disclosed that to their knowledge, no data

has been kept on this issue, and therefore no accurate number

could be ascertained. The fact is that today there are

processes that can be used to determine which software systems

should be candidates for re-engineering. DoD should begin

this process now.

5. What are the estimated cost savings DoD can anticipate

by re-engineering some of its applications?

This question was addressed to the same locations

mentioned above, as well as individuals in the military and

industry software arena. Again, since there is scant or no

data kept on applications that warrant re-engineering, no

approximate figure could be reached. The two best answers

received from this question ranged from "use chicken bones or

goat entrails to provide a figure, " to a more refined, but

nevertheless respected reply from the Software Engineering

Institute, that it would take several man months of effort to

arrive at an answer. According to a source at the Software

Engineering Institute, no work has been conducted in this

79

www.manaraa.com

area. There may be efforts currently seeking an answer to

this question. However, no source could be found during this

research effort.

C. LESSONS LEARNED

The most difficult aspect of conducting this research was

never having been part of a development team that used a CASE

or I-CASE tool. However, the author was able to attend two

seminars, visit some I-CASE vendors, and work with tutorial

versions of one I-CASE product. The lack of any hands on

experience did not hinder the quest for information, though at

times some naive and novice questions were asked. Most

sources contacted were extremely cooperative and understand-

ing. The questionnaires provided useful information, but on

site and face- to- face interviews would have helped gain more

insight and understanding.

The I-CASE vendors were helpful in explaining and

demonstrating their products, but were not willing, with the

exception of Texas Instruments, to provide clients who had

used or were in the process of using an I-CASE tool. This

limited the chance to obtain on site face- to- face exposure of

I-CASE usage. Several CASE consultants indicated that they

did not know of any published re-engineering case

studies/lessons learned. This could be attributed to the fact

that re-engineering and I-CASE are relatively new technologies

and little information is available for dissemination. On

80

www.manaraa.com

the other hand, some organizations may not wish to publish

their shortcomings, failures, or successes.

One of the interesting aspects of the research was that

re-engineering had a different meaning depending on who was

asked. Chapter II of this paper discussed the most widely-

accepted view and definitions of re-engineering. However, one

individual interviewed that was using an I -CASE tool, con-

sidered migrating components of a program into a corporate

database as re-engineering. In this case, the program itself

was not being re -engineered, but since minor modifications

were made to the program before it was placed into a corporate

database, it constituted re-engineering. The bottom line is

that, for some, any change or modification, however slight,

can constitute re-engineering.

The use of e-mail (electronic mail) was invaluable in the

research. From the onset, e-mail was used to contact sources

to help clarify issues, ask for additional sources and more

important: to ask questions. Phone conversations help, but

people are not always available. E-mail provided great

flexibility in collecting data. It is highly recommended for

anyone wishing to conduct research to use e-mail.

D. FINAL THOUGHTS AND RECOMMENDATIONS

One of the items stressed in this thesis was the need for

an organization to conduct a self assessment of its software

inventory to evaluate the need to re -engineer. DoD should

develop guidelines in this area. The Software Technology

81

www.manaraa.com

Support Center at Hill Air Force Base has made strides in this

area. The following steps are recommended for the DoD to

consider with respect to re-engineering with I-CASE tools.

Some are unique to re-engineering. Others are applicable to

any software project.

1. Use metric analysis tools to assess applications for
re-engineering. Metric tools will allow for the iden-
tification of trouble spots within a program. This
will help in determining whether a program is
structured or not.

2. Start with selected pilot projects of applications
identified in Step one as good re-engineering
candidates. One alternative to expedite this
procedure is to hire experienced consultants that can
provide guidance in employing re-engineering
methodologies that have been successfully used in the
civilian arena.

3. I-CASE tools have been designed and used primarily for
systems development. Re-engineering can be done with
I-CASE tools, but it requires that people rigorously
identify what data is to be captured and structured
into a data repository. Much of this process is
manual and requires motivated and skilled personnel to
complete. Non- integrated CASE tools may also be
required.

4. It is essential that managers with both technical and
interpersonal skills be placed in re-engineering
projects using I-CASE tools.

5. Select the most motivated and technically proficient
personnel for initial training. If possible, all
personnel assigned to a re-engineering project should
receive training. If it is impossible to train every-
one, the personnel that are trained and proficient
with I-CASE tools can teach others within the
organization.

6. Reward and recognize personnel for their work.

It is the responsibility of management to evaluate the

goals that an organization should strive to meet. Software

82

www.manaraa.com

re-engineering should not be attempted for its own sake, but

rather in terms of the organization's goals. If a system is

still of value to an organization, then re-engineering may be

an option. However, some systems are beyond help because of

their complexity, poor documentation, and unstructured design.

If this is the case, it is better to develop a new system.

83

www.manaraa.com

APPENDIX A

THE RE-ENGINEERING CANDIDATE SELECTION PROCESS

The candidate selection process consists of determining
the software system's complexity, importance, and longevity,
and then choosing the appropriate strategy calculated to be
the most cost effective.

The information gathering process consists of answering a
series of questions, supplying the requested metrics, and
deciding whether the answer corresponds to one of three
values:

- Low, medium, or high (for complexity and importance)

- Short, medium, or long (for remaining system life)

.

Instructions are provided in each section on determining
a consensus value. More precise definitions for the terms are
given later within this methodology.

Complexity Analysis of the Candidate Software

Answer all the questions in this section that you can. If
you do not know the answer, attempt a consensual answer. It
is strongly recommended you consult with several people when
answering these questions to help minimize potential error or
bias. Since each question varies in importance, each question
is weighed. Multiply each answer by the weighing factor.

1. How many executable lines of code exist? (wt. = 2)
1 - Less than 15K
2 - Between 15K and 100K
3 - More than 10 OK

2. What is the statistical mode (see the glossary) of
executable lines per module? (wt. = 2)

1 - Less than 50
2 - Between 50 and 200
3 - More than 200

3

.

What is the statistical mode of the Cyclomatic
complexity per module? (wt. = 3)

1 - Ten or less

84

www.manaraa.com

2 - Between 10 and 2

3 - More than 20

4. What is the statistical mode of the Essential
complexity per module? (wt. = 3)

1 - Five or less
2 - Between 5 and 10
3 - More than 10

5. What is the system's language level? (wt. = 1)

1 - "4GL" (advanced, user- friendly languages)
2 - "3GL" (higher order languages)
3 - "2GL" (assembly language)

6. The system was created using a development strategy
that was: (wt. = 3)

1 - Clear, concise, and complete
(such as DOD-STD-2167A)

2 - Vaguely understood
3 - Non-existent

7. How many programming languages does the system use?
(wt. = 2)

1 - One
2 - Two
3 - More than two

8. Over the last 6 months, has the number of errors
appeared to: (wt. = 3)

1 - Decrease
2 - Level
3 - Increase

9. What is the system's age as measured from the first
release? (wt. = 1)

1 - Less than 2 years
2 - Between 2 and 5 years
3 - More than 5 years

10. How often is the system modified (per month)?
(wt. = 2)

1 - One or fewer times
2 - About 2 or three times
3 - More than 3 times

85

www.manaraa.com

11. How many versions have been released since the system
was first designed or last re -engineered? (wt. = 1)

1 - Two or less
2 - Between 3 and 5

3 - Six or more

12

.

How many people have update access to this software
system? (wt . = 1)

1 - One or two
2 - Three or four
3 - More than 4

13. Does the system have a maintenance backlog? (wt. = 3)

1 - No
2 - Yes, But steady or decreasing
3 - Yes and increasing

14. How many maintenance programmers know the entire
system very well? (wt. = 2)

1 - Three or more
2 - One or two
3 - Nobody

15

.

What is the percentage of maintenance personnel
turnover (per year)? (wt. =2)

1 - Less than 5%
2 - Between 5% and 3 0%
3 - More than 30%

16. How many hours are required to maintain the system per
month? (wt. - 3)

1 - Sixteen or less
2 - Between 16 and 32
3 - More than 32

17. Does the maintenance organization think the system's
quality is: (wt. = 2)

1 - Improving
2 - Remaining the same
3 - Declining

18. Do the system's users think the system's quality is:
(wt. = 3)

1 - Improving

86

www.manaraa.com

2 - Remaining the same
3 - Declining

19

.

What is the average number of years experience for
those maintenance programmers expected to maintain the
candidate system? (wt. = 1)

1 - Less than 3 years
2 - Between 3 and 10 years
3 - More than 10 years

20. Are the original developers available for
consultation? (wt. = 3)

1 - Yes
2 - Yes, but the system is over 5 years old or the

original developers are not easily accessible.
3 - No

21. Are the programming staff members well -trained in
modern software engineering techniques? (wt. = 2)

1 - Yes, most are
2 - Some are
3 - None or very few are

22. What is the organization's SEI maturity level?
(wt. = 2)

1 - Three or higher
2 - Two
3 - One

23. Between operating systems, the candidate software
system is: (wt. = 1)

1 - Portable
2 - Not portable
3 - Tightly coupled (where the software system

internalizes parts of the operating system- -for
example, embedded assembly code or system utility
calls)

24. The system's documentation is best characterized as:
(wt. = 3)

1 - Complete and current
2 - Mostly complete and current
3 - Non-existent or untrustworthy

87

www.manaraa.com

Compute the Average Complexity Value

Compute the system complexity value "C" by averaging the
numbers associated with each answer (1, 2 or 3) as shown by
the equation:

C = fSum of (answer * weight) 1

(Sum of weights of questions answered)

If C is 1.66 or less, the overall system complexity value
is low. If C is between 1.67 and 2.33, the overall system
complexity value is medium. And if C is 2.34 or greater, the
overall system complexity value is high.

Importance (Risk) Analysis

Answer each of the following questions unless the question
does not apply. We strongly recommend you consult with
several people when answering these questions to help minimize
potential error or bias. Since each question varies in
importance, each equation is weighted. Multiply each answer
by the weighing factor.

1. If the system failed for a significant period of time,
what would be the effect on the organization?
(Significant is a term relative to the system being
considered.) (wt. = 3)

1 - Little or no damage
2 - Significant damage
3 - Permanent damage

2. How frequently does the system execute? (wt. = 1)

1 - Quarterly or less
2 - Weekly
3 - On-line

3. Are there back-up systems (current, recently tested,
and ready at a moment's notice) which could be used if
the system fails? (wt. = 2)

1 - Yes
2 - Yes, but with some difficulty and a significant

loss of efficiency
3 - No

4. How much of the organization's finances does the
system control or generate? (wt. = 2)

1 - None
2 - Some

88

www.manaraa.com

3 - A significant percentage

5. Does the system represent a unique and important
competitive advantage within the industry? (wt. = 3)

1 - No
2 - Somewhat
3 - Yes

6. If the system failed, what is the potential for loss
of life, lawsuits, aircraft failure, etc.? (wt. = 3)

1 - None
2 - Some
3 - Significant

Compute the Average Importance Value

Compute system importance value "I" by averaging the
numbers associated with each answer (1, 2 or 3) as shown by
the equation:

I = rsum of (answer * weight) 1

(Sum of weights of questions answered)

If "I" is 1.66 or less, the overall system importance
value is low. If "I" is between 1.67 and 2.33, the overall
system importance value is medium. And if "I" is 2.34 or
greater, the overall system importance value is high.

Lifetime Analysis (Remaining System Life)

The Lifetime Analysis evaluates an existing system to
determine how long a system will be maintained. The useful
system lifetime is usually a management decision, but it
should be based on technical aspects of the system and user
expectations. Overall system health, combined with the
results of the Complexity and Importance Analysis, should be
used to determine this lifetime value.

To derive the lifetime value, use the above information
and decide how long the system will remain active. Next,
assign a value of short, medium, or long according to the
following criteria:

- Short if the remaining life is 6 months or less.
- Medium if the remaining life is greater than 6 months,
but less than 3 years

.

- Long if the remaining life is 3 years or more.

Choose a Re-engineering Methodology

89

www.manaraa.com

Using the three values of system complexity, system
importance, and remaining system life, use the appropriate
selection matrix on the following pages to determine the re-
engineering methodology.

A cost analysis can be performed for all six re-
engineering choices, but this re-engineering selection process
provides the re-engineering choice that should be the most
cost-effective for the system's overall health.

(Note: A short lifetime normally makes re-engineering
impractical regardless of complexity or importance. Thus,
Figure 4-1 reflects a "Leave Alone" choice.)

Candidate Cost Analysis

The purpose of the candidate cost analysis is to implement
the re-engineering strategy that will best reduce monthly
maintenance costs. The cost analysis is simply a comparison
of the current monthly system maintenance cost against the
monthly cost (pro- rated over the expected life of the system)
of implementing the re-engineering strategy and the estimated
maintenance thereafter.

If the re-engineering strategy is "Leave Alone" (that is,
the remaining system life is short for all levels of
complexity and importance) then the need for a candidate cost
analysis is obviously unnecessary as this cost is the same as
the current maintenance cost.

90

www.manaraa.com

METHODOLOGY MATRIX FOR RE-ENGINEERING

Short Lifetime Remaining

Complexity-

High

Med

Low

Leave Alone

Low Med

Importance

Figure I. Short Lifetime Remaining

High

Medium Lifetime Remaining

Complexity

High Restructure Transverse Transverse

Med Reformat Restructure Transverse

Low Leave Alone Reformat Transverse
(pilot project

Low Med

Importance

Figure II. Medium Lifetime remaining

High

91

www.manaraa.com

Long Lifetime Remaining

Complexity

High

Med

Low

Restructure/
Redocument

Transverse/
Redocument

Redocument/
Transverse/
Replace

Restructure/
Redocument

Transverse Transverse

Reformat Restructure Transverse

Low HighMed

Importance

Figure III. Long Lifetime Remaining

Maintenance Cost

The maintenance cost is the sum of projected enhancement
costs, operational costs (including personnel) , and failure
costs. All of these figures should be readily available from
previous system reports or financial statements. If not, then
a close estimate must be determined.

It is important to review the maintenance cost over
several years and to chart the maintenance cost (quarterly or
whichever time unit best suits your organization's needs) to
see if the cost is changing at a predictable rate. This is
important since if the cost is rising or falling rapidly, then
a charted cost will be a better predictor of future costs
rather than a single figure from last month.

If the maintenance costs remain essentially constant, then
the correct maintenance cost can be extrapolated from the
chart. This extrapolation should be done for the entire
estimated remaining system life. An average quarterly or
monthly maintenance cost must be calculated to be compared
with the pro -rated, average implementation cost.

92

www.manaraa.com

Cost for Reengineering Implementation

To find the pro-rated monthly implementation cost (C ±) ,

use the equation below:

Cpmi = [Implementation cost)
(remaining system life in months) + M.^

Here, 1VL is the estimated monthly maintenance cost after
re-engineering. The Implementation cost must include the
costs associated with the factors below. Find the value of
each (if applicable) and use the resultant sum in the equation
above

.

- Software too(s) expense (including maintenance contract)

- System analysis for future maintenance requests

- Implementation (system and personnel expenses)

- Any software modifications

- Additional required hardware or hardware upgrades

- Procedures modification or development

- Training

- Operating (system and personal expenses)

- Post- implementation support

\A± is calculated by taking the current monthly maintenance
cost and multiplying it by one of the following estimated cost
savings percentages (plus or minus 5%)

:

- 95% if Reformatting

- 75% if Redocumenting

- 50% if Restructuring

- 25% if Transverse engineering

Note that these maintenance costs decrease the more the
system is re -engineered (if done correctly). These
percentages are not necessarily the cost savings that every
organization will see. But based on the experience of the
authors and as reviewed by acknowledged experts, they
represent reasonable values for the average re-engineering
effort. Finally, the Replace cost percentage is not listed
since it has no accurate value. An accurate and in-depth

93

www.manaraa.com

analysis of system replacement is complex, and varies widely
with each application. Calculating a replacement cost is
beyond the scope of this report. However, this process should
provide the desired results if the replacement cost is
determined independently.

Analysis of Cost Results

Cost results are analyzed by comparing the current monthly
maintenance cost plus the estimated impact due to system
failure against the estimated pro- rated monthly maintenance
cost (Cpmi) following re-engineering plus the costs of
implementation. If either cost is significantly larger than
the other, then implementation of the lower- cost option should
save you money. If the costs are approximately the same, then
the organization should review its priorities and objectives
to determine whether re-engineering is in its best interests.

Implementation of Choice

If the re-engineering methodology has successfully passed
the candidate cost analysis, then one must determine which
system modules need to be re -engineered. Not every part of a
candidate system need be re -engineered. Significant savings
can still be accrued by re-engineering a few critical (usually
labor intensive) areas of the candidate system. This strategy
will concentrate re-engineering efforts and organizational
resources on those problem areas.

If translation has been mandated (to Ada source code, for
example) , then re-engineering becomes essential. Since source
code translation is not a line- for- line operation, some re-
engineering will be required to accommodate the new language
and its capabilities. If translation is not mandated, then
considered. A modern language, applied within the context of
modern software engineering techniques, can offer better tools
and constructs as well as an environment conducive to greater
software quality.

Next, management support must be obtained to implement the
chosen re-engineering strategy. If management has been
actively involved during this re-engineering economic
evaluation, this step should be a mere formality. If not,
management must be convinced that the re-engineering
investment will be cost effective and help meet internal
organizational goals. This re-engineering dec ision-making
process (especially with the candidate cost analysis) will
form the basis for a detailed study to implement a specific
re-engineering plan.

Once implementation is justified and granted, the re-
engineered system's maintenance costs should be periodically

94

www.manaraa.com

compared to the estimated cost. This comparison is necessary
to fine-tune subsequent analysis efforts to fit your
organization's unique needs.

Glossary of Terms

Cyclomatic Complexity is a measurement of the number of paths
through a program.

Essential Complexity is a measurement of the level of
"structuredness" of a program.

Mode is a term from statistics denoting the most common number
found in a distribution. For the complexity questions, mode
refers to those modules whose size or complexity is typical.

Redocumentation is the creation or revision of a semantically
equivalent representation with the same relative abstraction
level

.

Reformatting tools are redocumentation tools which make source
code indentation, bolding, capitalization, etc., consistent.

A Restructurer is a software tool that makes source code more
understandable by implementing modern programming constructs
and reformatting.

Transverse engineering is the combination of reverse
engineering and forward engineering, including any design
changes prior to forward engineering.

95

www.manaraa.com

APPENDIX B

RE-ENGINEERING QUESTIONNAIRE

1. How many programs/systems have you re-engineered using an
I-CASE tool? What percentage of these were unstructured code?

2. How accurate was the original system's documentation?

a. accurate and up to date

b. moderate

c

.

marginal

d. poor - out of date

3. During your re-engineering effort, have you encountered
any areas that had to be re- engineered manually? 1 If yes,
which areas?

4. Provide a breakout of the original system undergoing re-
engineering using the following attributes:

a. how old is the original system

b. number of batch programs

c. number of interactive programs_

d. number of assembly programs (if any)

e. total estimated lines of code

f . number of computer languages used_

5. Was metrics analysis performed before and after re-
engineering, i.e., did you use a metric tool like the McCabe
Cyclomatic Complexity Metric, Essential Complexity Metric,

1 Manual in this sense means : was the original system so
messed up, did you have to physically sit down and draw your own
dataflow diagrams, entity- relationship diagrams, or write code?

96

www.manaraa.com

Design Complexity Metric, Battle Map Analysis Tool, or any
other vendor metric tool to assist you in finding areas of
your program code that were revealed as error prone or hard to
maintain? If yes, what type:

a. Lines of Code (LOC) count

b. Function Point Analysis

c. Cyclomatic Complexity

d. Other

6. In a previous Federal re-engineering case study conducted
by the National Institute of Standards and Technology (NIST)
and the Internal Revenue Service (IRS) , it was determined that
the complexity of the re-engineering process increased in
relation to the complexity of the programs. The programs that
required the most manual intervention were the programs that
were also the most complex. 2

a. Before your re-engineering process began, how was
priority of programs to be re -engineered determined
(i.e., metric analysis, personal experience with the
system at hand etc.)?

b. Have you found a correlation between the most complex
programs and manual intervention?

7. At the current point in your re-engineering effort, what
percent of the re-engineering has been automated and what
percent has been manual?

Automated Manual

a. number of batch programs

b. number of interactive programs

8. What type of re-engineering methodology is your
organization utilizing for re-engineering, e.g., Information
Engineering, Rapid Application Development, others?

2 The case study cited in this question is titled "Software
Reengineering: A Case Study and Lessons Learned, " by Mary K. Ruhl
and Mary T. Gunn. It is published by the Cutter Information
Corporation, 37 Broadway, Arlington, MA 02174-5539

97

www.manaraa.com

9. Does your organization have data administration polices
set throughout, i.e., are there policies and procedures that
determine how data is structured and defined?

10. How would you describe the "learning curve" of your re-
engineering team in terms of time required to for the team to
become acclimated and confident in the following:

a. re-engineering methodology

b. tools (I-CASE tools that incorporate dataflow
diagrams, entity- relationship diagrams etc.)

c. cultural adjustment (i.e., were some personnel
hesitant to learn techniques incorporated with I-CASE
tools)

11. How was the time frame established for re-engineering
efforts?

12. What has been the success rate in meeting the original
schedule for re-engineering projects?

a. percentage that were completed before the schedule
completion date

b. percentage that were completed on schedule

c. percentage that were completed after the scheduled
completion date

13. What were the primary reasons (if applicable) re^
engineering efforts have been over schedule?

14. In what areas (if applicable) has the I-CASE tool not met
your expectations:

a. analysis

b. design

c. code generation

d. Implementation

e. learning curve/ease of use

98

www.manaraa.com

f. other

15. CASE tools have been most effective in activities which
actively use a structured analysis and design methodology. To
what extent did your organization use such a methodology?

a. regularly (on almost all projects!

b. sometimes/Usually (40%-70% of the projects)

c. seldom/not at all

16. What training was provided those using I-CASE tools for
re-engineering or development? (any specific schools provided
by the vendor or DoD)

17. To what extent was a user involved in the re-engineering
effort?

18. Do you use contractor support for the I-CASE tools and
re - engineering?

99

www.manaraa.com

APPENDIX C

LIST OF FIGURES

RE-ENGINEERING:

Conversion of a software
system into another (better)
software system of similar
functionality.

REVERSE ENGINEERING:

Extraction (recovery) of
higher level design or
specification information
from software.

SPECIFICATION

7R

CODE

Figure 2-1. Distinction between re-engineering and
reverse engineering. [Ref. 5]

100

www.manaraa.com

5 SYSTEMS
ANALYSIS

SYSTEMS
SUPPORT &

MAINTENANCE

SYSTEM
DESIGN

SYSTEMS
IMPLEMENTATION

Figure 2-2.
21]

The systems development life cycle. [Ref

101

www.manaraa.com

Reverse
Engineering

Forward
Engineering

CASE Levels:

Requirements Business Analyst

Specifications

SDLC Levels:

System Analysis

Data Analyst
Systems Analyst

7S
—

Implementation

Operation

System Design

* DBA
-^i Programmer

Existing
Applications

System
Implementation

System
Maintenance

New
Application!

* Database Administrator

Figure 2-3. Conceptual Re-engineering Model. [Ref, 9]

102

www.manaraa.com

PRESENTATION
INTEGRATION

PROCESS
INTEGRATION

Appearance and Behavior

DATA

CASE
TOOL

INTEGRATION
Process Step s.

r s
Interoperability

Event
/

Nonredundancy

Constraint t
Data Consistency

s< /v.

Data Exchange

C
lr

Provision '

ONTROL
JTEGRATION

Figure 3-1. A single CASE tool and its relationship with
the four types of integration. [Ref. 32]

103

www.manaraa.com

Customer Order

Business
Entitles

Data
Entities

Metadata
Entities

Figure 3-2. Meta-Entities, the building blocks of the
repository. [Ref. 35]

104

www.manaraa.com

Common User Interface

11 11 11
1-CASEToolA 1-CASEToolB l-CASE Tool C

ii ii ti
INTEGRATION STANDARD (A conceptual syntax that can be used to

represent and cross map any actual syntactical entities used in a CASE
tool)

REPOSITORY (A database management system designed to automate
an Integration standard)

t i
DATABASE (Extended Relational or Object-Oriented)

Figure 3-3. The relationship between an integration
standard and a repository. [Ref. 17]

105

www.manaraa.com

APPENDIX D

LIST OF TABLES

Table 2-1. COBOL ENHANCEMENT PRODUCTIVITY RATES. [Ref
40]

BASE SYSTEM OPTIMAL AVERAGE FUNCTION
SIZE (LOC) ENHANCEMENT PRODUCTIVITY RATE POINTS/

SIZE (LOC/PERSON YEAR) PERSON YR.

1,000 30 16,000 160

2,000 60 12,000 120

4,000 120 10,000 100

8,000 240 8,000 80

16,000 480 6,000 60

32,000 960 5,500 55

64,000 1,920 5,000 50

128,000 3,840 5,000 30

256,000 7,680 2,000 20

512,000 15,360 1,000 10

1,024,000 30,720 500 5

106

www.manaraa.com

Table 2-2. ENHANCEMENT CASE STUDIES: THE SIGNIFICANCE OF
USING METRIC ANALYSIS. [Ref. 40]

Poorly
Structured

Well
Structured

Defect Potential 250 75

Removal Efficiency 85% 95 =

Defects at Delivery 38

Stabilization Period 5 months 2 weeks

Mean Time to Failure 1.5 hours 28 hours

User Satisfaction low high

107

www.manaraa.com

Table 2-3. COMMON RE-ENGINEERING PITFALLS. [Ref. 41]

1. Resistance to change.

Lack of a proven methodology to guide the
system re-engineering team, e.g., must be
able to collect metrics and know how to
interpret them. Must have a methodology
from start to finish.

3. Failure to identify a target environment.

4. Failure to integrate with other system options,
i.e., it may be better to redevelop than to
re-engineer the system.

Failure to identify a business need. If a
business analysis is not conducted, a
reengineering tool may drive the process rather
than the business needs of the organization
being the driver.

6. Inadequately trained managers.

7. Lack of quality integrated tools.

8. Failure to perform an up front assessment,
i.e., an organization should not jump into
a re-engineering project without prior
planning.

9. Inadequate education and training.

108

www.manaraa.com

Table 3-1. POOR VERSUS WELL STRUCTURED SYSTEMS. [Ref
40]

Poorly
Structured

Well
Structured

Requirements

Design

Coding

Documentation

1 month

2 months

4 months

5 months

1 month

1 . 5 months

2 months

5 months

Integration/Test 4 months 1 month

Management 1 month . 5 month

Total Enhancement 12 . 5 months 6.5 months

Total Costs $75,000 $39,000

109

www.manaraa.com

LIST OF REFERENCES

1. Chikofsky, Elliot J. and Cross, James H, "Reverse
engineering and design recovery: a taxonomy," IEEE
Software , January 1990.

2. Mahon, Andrew, "Reengineering: where to begin," New
Science Report on Strategic Computing . February 1991.

3. Weinman, Eliot D, "The promise of software
reengineering," Informationweek , April 22, 1991.

4. MacKinnon, Peter, "CASE myths debunked," Computing
Canada . Vol 17, No. 11, May 23, 1991.

5. Bush, Eric, "Re-engineering and Reality," Procedings from
the Digital Consulting, Inc. , CASE World Conference &

Exposition, Santa Clara, California, 18-20 February 1992.

6. Ulrich, William M, "Re-engineering: Defining an
Integrated Migration Framework," Case Trends . November-
December 1990 to May-June 1991 issues.

7. Jones, Capers, Applied Software Measurement , McGraw-Hill,
Inc., 1991.

8. Jones, Meilir Page, The Practical Guide to Structured
Systems Design , Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

9. Bachman, Charlie, "A CASE for Reverse Engineering,"
DATAMATION . Vol. 34, No. 13, July 1, 1988.

10. Ulrich, William D. and Weinman, Eliot D, "Reality of
reengineering," Informationweek , December 30, 1991.

11. Snell, Ned, "Using CASE to rebuild software," Datamation .

Vol 37, No. 15, August 1, 1991.

12. Koka, Ravi, "Reverse Engineering - The Missing Link,"
Procedings from the Digital Consulting, Inc. , CASE World
Conference & Exposition, Santa Clara, California, 18-20
February 1992.

13. Seymour, Patricia, "Critical Success Factors For Software
Re-engineering," Procedings from the Digital Consulting,
Inc., CASE World Conference & Exposition, Santa Clara,
California, 18-20 February 1992.

110

www.manaraa.com

14. Martin, James, CASE & I-CASE , High Productivity Software,
Inc., Marblehead, Massachusetts, 1988.

15. Manley, Gary W. , The Classification and Evaluation of
Computer Aided Software Engineering Tools, Master's
Thesis, Naval Postgraduate School, Monterey, California,
September 1990.

16. Burke, John P., "Tough CASE," HP Professional . Vol. 5,
No. 7, July 1991.

17. Harmon, Paul, "Intelligent CASE: The Status of CASE in
Early 1992," Intelligent Software Strategies , Vol. 8,
No. 3, Cutter Information Corporation, March 1992.

18. "Information Engineering Facility: A Totally Integrated
CASE Environment," Texas Instruments Incorporated, Piano,
Texas 1991.

19. AD/Cycle Digest , International Business Machines
Corporation, Second Edition, Fall 1991

20. "Management Issues: Software Engineering For
Redevelopment," CASE Strategies . Vol. 3, No. 8, August
1991.

21. Whitten, Jeffrey L. , Bentley, Lonnie D. , and Barlow,
Victor M. , Systems Analysis & Design Methods Second
Edition . Irwin, Homewood, Illinois, 1989.

22. Knight, Robert Lewis, Data Administration and its Role at
Naval Supply Systems Headquarters, Master's Thesis, Naval
Postgraduate School, Monterey, California, September
1985.

23. McClure, Carma, CASE Is Software Automation . Prentice
Hall, Englewood Cliffs, New Jersey, 1989.

24. Ubois, Jeff, "IS Managers are Getting RADical in
Developing in-house Applications," MacWeek, Vol. 6,
No. 4, January 27, 1992.

25. Jacques, Trevor, "Prototyping Tools Ease Coding Burden,"
Computing Canada . Vol. 18, No. 4, February 17, 1992.

26. Jacques, Trevor, "From Code-and-Fix to 4GL's: why we need
RAD," Computing Canada . Vol. 18, No. 2, January 20, 1992.

27. Martin, James, "CASE Tools To Play a Larger Role in IS
Organizations," PC WEEK . July 2, 1990.

Ill

www.manaraa.com

28. Martin, James, Information Engineering, Book II. Planning
and Analysis . Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1990.

29. Bloor, Robin, "CASE and Meta CASE: Powerful CASE Tools
May be the Basis of a Wholly new Approach to the
Development Environment," DBMS . Vol. 5, No. 1, January
1992.

30. Sittenauer, Chris, Olsem, Mike, Daich, Greg, Murdock,
Daren and Janzen, Packer, Re-engineering Tools Report,
March 1992 . Software Re-engineering Tools Evaluation
Project, Software Technology Support Center, Hill Air
Force Base, Utah.

31. Request for Information (RFI) for Integrated Computer
Aided Software Engineering (I-CASE) . Standard Systems
Center, Gunter AFB, Alabama, December 18, 1991.

32. Thomas, Ian and Nejmeh, Brian A., "Definitions of Tool
Integration for Environments," IEEE Software . Vol. 9, No.
2, March 1992.

33. Chen, Minder and Norman, Ronald J., "A Framework for
Integrated CASE," IEEE Software . Vol. 9, No. 2, March
1992.

34. "Cohesion: Your Open Advantage When Developing Software,"
Digital Equipment Corporation, 1992.

35. "Digitals Distributed Repository: Blueprint for Managing
Enterprise-Wide Information," Digital Equipment
Corporation, 1991.

36. RAD: Rapid Application Development Handbook , James Martin
Associates Inc. , 1850 Centennial Park Drive, Ruston,
Virginia, USA, 1990.

37. Morris, Ed, Feiler, Peter, and Smith, Dennis, "Case
Studies in Environment Integration," Technical Report
CMU/SEI-91-TR13 ESD-91-TR-13 . December 1991 . Software
Engineering Institute, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.

38. Ruhl, Mary K. , Gunn, Mary T. , "Software Reengineering: A
Case Study and Lessons Learned," CASE Strategies . Cutter
Information Corporation, 37 Broadway, Arlington,
Massachusetts

.

39. Rothe, James E. , "Re-engineering To Client/Server,"
Proceedings from Digital Consulting, Inc. National

112

www.manaraa.com

Software Re-engineering & Maintenance Conference, San
Jose, California, 10-12 August, 1992.

40. Jones, Capers, "Software Re-engineering and Measurement, "

Proceedings from Digital Consulting, Inc. National
Software Re-engineering & Maintenance Conference, San
Jose, California, 10-12 August, 1992.

41. Seymour, Patricia, "Critical Implementation Components
and Cost Justification for Successful Software Re-
engineering," Proceedings from Digital Consulting, Inc.
National Software Re-engineering & Maintenance
Conference, San Jose, California, 10-12 August, 1992.

42. Ulrich, William M. , "Software Re-engineering: An
Effective Combination of Methods & Tools," Proceedings
from Digital Consulting, Inc. National Software Re-
engineering & Maintenance Conference, San Jose,
California, 10-12 August, 1992.

43. Chikofsky, Elliot, "Untying the spaghetti: an expert
picks the tools." Datamation , Vol. 38, No. 9, April 15,
1992.

44. Jones, Capers, "Applying Total Quality Management (TQM)
to Software," Software Productivity Research, INC.,
August 4, 1992.

45. "Ada Transition Research Project (Phase II) ASQB-GI-92-
004," US Army Information Systems Engineering Command,
Fort Huachuca, Arizona, April 1992.

46. "McCabe Tools Catalog: a comprehensive set of software
analysis tools for UNIX, VMS, and DOS," McCabe &

Associates, Columbia, Maryland.

47. Knowledgeware Inc., Redevelopment Products . Atlanta,
Georgia, 1992.

48. "TI's IEF scores high for integration, benefits
delivery," Computerworld, April 22, 1991.

49. Telephone conversation between Donald Griest of
Knowledgeware Inc., and the author, 2 September 1992.

50. Datapro Information Services Group, Texas Instruments
Information Engineering Facility, McGraw-Hill, 1991.

51. Telephone conversation between Jim Hawthorne, LTCOL, USA,
Directorate of Defense Information/ Information
Technology, and the author, 4 September 1992.

113

www.manaraa.com

52. Telephone conversation between Kay Jain of Texas
Instruments, and the author, 04 September 1992.

53. Telephone conversation between Dr. Bill Curtis of the
Software Engineering Institute at Carnegie-Mellon
University, and the author, 25 August 1992.

54. "The Re-engineering Center: A Price Waterhouse
Initiative," CASE STRATEGIES , Vol. 2, No. 8, August,
1990.

114

www.manaraa.com

INITIAL DISTRIBUTION LIST

NO. COPIES

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5002

Professor Martin J. McCaffrey, Code AS/MF
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5002

Professor Tung Bui, Code AS/BD
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5002

LT Charles Jennings, USN
6508 Whitesburg Dr.
Huntsville, Alabama 35802

115

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

Thesis
J466
c.l

Jennings
Re-engineering software

systems in the Department
of Defense using integrat-
ed computer aided software
engineering tools.

Thesis

J466

c.l

Jennings
Re-engineering software

systems in the Department
of Defense using integrat-
ed computer aided software
engineering tools.

www.manaraa.com

